Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
文献紹介: Controlling Politeness in Neural Machine ...
Search
Yumeto Inaoka
July 18, 2017
Technology
0
130
文献紹介: Controlling Politeness in Neural Machine Translation via Side Constraints
2017/07/18の文献紹介で発表
Yumeto Inaoka
July 18, 2017
Tweet
Share
More Decks by Yumeto Inaoka
See All by Yumeto Inaoka
文献紹介: Quantity doesn’t buy quality syntax with neural language models
yumeto
1
180
文献紹介: Open Domain Web Keyphrase Extraction Beyond Language Modeling
yumeto
0
230
文献紹介: Self-Supervised_Neural_Machine_Translation
yumeto
0
150
文献紹介: Comparing and Developing Tools to Measure the Readability of Domain-Specific Texts
yumeto
0
170
文献紹介: PAWS: Paraphrase Adversaries from Word Scrambling
yumeto
0
150
文献紹介: Beyond BLEU: Training Neural Machine Translation with Semantic Similarity
yumeto
0
270
文献紹介: EditNTS: An Neural Programmer-Interpreter Model for Sentence Simplification through Explicit Editing
yumeto
0
330
文献紹介: Decomposable Neural Paraphrase Generation
yumeto
0
230
文献紹介: Analyzing the Limitations of Cross-lingual Word Embedding Mappings
yumeto
0
220
Other Decks in Technology
See All in Technology
AI専用のリンターを作る #yumemi_patch
bengo4com
2
680
なぜ私はいま、ここにいるのか? #もがく中堅デザイナー #プロダクトデザイナー
bengo4com
0
1.2k
強化されたAmazon Location Serviceによる新機能と開発者体験
dayjournal
3
240
Model Mondays S2E03: SLMs & Reasoning
nitya
0
230
Node-REDのFunctionノードでMCPサーバーの実装を試してみた / Node-RED × MCP 勉強会 vol.1
you
PRO
0
130
Microsoft Build 2025 技術/製品動向 for Microsoft Startup Tech Community
torumakabe
2
330
Tech-Verse 2025 Global CTO Session
lycorptech_jp
PRO
0
1.1k
Geminiとv0による高速プロトタイピング
shinya337
0
180
「良さそう」と「とても良い」の間には 「良さそうだがホンマか」がたくさんある / 2025.07.01 LLM品質Night
smiyawaki0820
1
430
無意味な開発生産性の議論から抜け出すための予兆検知とお金とAI
i35_267
0
590
OPENLOGI Company Profile
hr01
0
67k
Yamla: Rustでつくるリアルタイム性を追求した機械学習基盤 / Yamla: A Rust-Based Machine Learning Platform Pursuing Real-Time Capabilities
lycorptech_jp
PRO
4
170
Featured
See All Featured
A Modern Web Designer's Workflow
chriscoyier
694
190k
10 Git Anti Patterns You Should be Aware of
lemiorhan
PRO
657
60k
The Pragmatic Product Professional
lauravandoore
35
6.7k
Agile that works and the tools we love
rasmusluckow
329
21k
Optimizing for Happiness
mojombo
379
70k
Product Roadmaps are Hard
iamctodd
PRO
54
11k
The Psychology of Web Performance [Beyond Tellerrand 2023]
tammyeverts
48
2.9k
Principles of Awesome APIs and How to Build Them.
keavy
126
17k
Connecting the Dots Between Site Speed, User Experience & Your Business [WebExpo 2025]
tammyeverts
5
230
Large-scale JavaScript Application Architecture
addyosmani
512
110k
It's Worth the Effort
3n
185
28k
How STYLIGHT went responsive
nonsquared
100
5.6k
Transcript
Controlling Politeness in Neural Machine Translation via Side Constraints Rico
Sennrich, Barry Haddow, Alexandra Birch Proceedings of NAACL-HLT 2016, pages 35–40 1 文献紹介(2017/07/18) 自然言語処理研究室 稲岡 夢人
概要 • 敬語のない元言語の翻訳で出力の敬語制御 • 敬語の制御にSide Constraintsを使用 • 英語→ドイツ語において性能が向上 2
NMT with Side Constraints • ニューラルネットに丁寧さを示す追加の 入力機能を与える • テスト時はユーザが丁寧さを入力 •
入力文の最後にトークンとして Side Constraintsを追加 → Attention-based encoder-decoder モデルであればSide Constraintsに 注意を払うことを学習できる 3
訓練セットへの自動注釈 • 事前に訓練セットに注釈をつける • 注釈は文レベルで付ける → ソースとターゲットで単語レベルの 対応を持たないため 4
訓練セットへの自動注釈 • ParZu(Sennrich et al., 2013)を用いて ルールに基づいて形態論的な注釈をつける • 命令形の動詞を含む文はinformalに分類 5
実験 • 訓練コーパス:OpenSubtitles (映画字幕丁 寧な文の対が48万 丁寧でない文の対が109万 • Groundhogを使用してAttention-based encoder-decoder NMTシステムを訓練
• Side Constraintsに過度な依存をしない ように半分の確率でラベル付けした 6
結果 • informalに限定した翻訳の98%はinformal または中立 • 丁寧な文に限定した翻訳の96%は 丁寧または中立 7
結果 • 参照文をもとにSide Constraintsを与えるオ ラクル実験ではBLEUが3.2改善 8
結果 • Side ConstraintsはNMTにオーバライド されることがある → 弱い制約なため 9
結果 • ランダムサンプルにおいても同様に Side Constraintsが有効である 10
結論 • 丁寧さの注釈を訓練の追加入力として統合し てNMTの敬語生成を制御できる • 丁寧さがユーザに指定される前提であるが 将来はソーステキストから自動的に予測する ことを目指す • 本稿では丁寧さの制御に焦点を当てている
が、幅広い現象にSide Constraintsを適用 できる可能性がある 11