Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
文献紹介: Controlling Politeness in Neural Machine ...
Search
Yumeto Inaoka
July 18, 2017
Technology
0
130
文献紹介: Controlling Politeness in Neural Machine Translation via Side Constraints
2017/07/18の文献紹介で発表
Yumeto Inaoka
July 18, 2017
Tweet
Share
More Decks by Yumeto Inaoka
See All by Yumeto Inaoka
文献紹介: Quantity doesn’t buy quality syntax with neural language models
yumeto
1
200
文献紹介: Open Domain Web Keyphrase Extraction Beyond Language Modeling
yumeto
0
260
文献紹介: Self-Supervised_Neural_Machine_Translation
yumeto
0
180
文献紹介: Comparing and Developing Tools to Measure the Readability of Domain-Specific Texts
yumeto
0
190
文献紹介: PAWS: Paraphrase Adversaries from Word Scrambling
yumeto
0
180
文献紹介: Beyond BLEU: Training Neural Machine Translation with Semantic Similarity
yumeto
0
300
文献紹介: EditNTS: An Neural Programmer-Interpreter Model for Sentence Simplification through Explicit Editing
yumeto
0
370
文献紹介: Decomposable Neural Paraphrase Generation
yumeto
0
240
文献紹介: Analyzing the Limitations of Cross-lingual Word Embedding Mappings
yumeto
0
250
Other Decks in Technology
See All in Technology
月間数億レコードのアクセスログ基盤を無停止・低コストでAWS移行せよ!アプリケーションエンジニアのSREチャレンジ💪
miyamu
0
390
ブロックテーマでサイトをリニューアルした話 / 2026-01-31 Kansai WordPress Meetup
torounit
0
230
Databricks Free Edition講座 データサイエンス編
taka_aki
0
250
名刺メーカーDevグループ 紹介資料
sansan33
PRO
0
1k
新規事業における「一部だけどコア」な AI精度改善の優先順位づけ
zerebom
0
440
Amazon Bedrock AgentCore 認証・認可入門
hironobuiga
2
450
Meshy Proプラン課金した
henjin0
0
130
最速で価値を出すための プロダクトエンジニアのツッコミ術
kaacun
1
430
SREじゃなかった僕らがenablingを通じて「SRE実践者」になるまでのリアル / SRE Kaigi 2026
aeonpeople
5
350
クレジットカード決済基盤を支えるSRE - 厳格な監査とSRE運用の両立 (SRE Kaigi 2026)
capytan
4
860
re:Inventで出たインフラエンジニアが嬉しかったアップデート
nagisa53
4
230
Bill One 開発エンジニア 紹介資料
sansan33
PRO
4
17k
Featured
See All Featured
Reality Check: Gamification 10 Years Later
codingconduct
0
2k
DevOps and Value Stream Thinking: Enabling flow, efficiency and business value
helenjbeal
1
88
VelocityConf: Rendering Performance Case Studies
addyosmani
333
24k
Test your architecture with Archunit
thirion
1
2.1k
Bioeconomy Workshop: Dr. Julius Ecuru, Opportunities for a Bioeconomy in West Africa
akademiya2063
PRO
1
52
Why Your Marketing Sucks and What You Can Do About It - Sophie Logan
marketingsoph
0
69
How To Stay Up To Date on Web Technology
chriscoyier
791
250k
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
35
3.3k
4 Signs Your Business is Dying
shpigford
187
22k
Ten Tips & Tricks for a 🌱 transition
stuffmc
0
61
Building Applications with DynamoDB
mza
96
6.9k
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
9
1.1k
Transcript
Controlling Politeness in Neural Machine Translation via Side Constraints Rico
Sennrich, Barry Haddow, Alexandra Birch Proceedings of NAACL-HLT 2016, pages 35–40 1 文献紹介(2017/07/18) 自然言語処理研究室 稲岡 夢人
概要 • 敬語のない元言語の翻訳で出力の敬語制御 • 敬語の制御にSide Constraintsを使用 • 英語→ドイツ語において性能が向上 2
NMT with Side Constraints • ニューラルネットに丁寧さを示す追加の 入力機能を与える • テスト時はユーザが丁寧さを入力 •
入力文の最後にトークンとして Side Constraintsを追加 → Attention-based encoder-decoder モデルであればSide Constraintsに 注意を払うことを学習できる 3
訓練セットへの自動注釈 • 事前に訓練セットに注釈をつける • 注釈は文レベルで付ける → ソースとターゲットで単語レベルの 対応を持たないため 4
訓練セットへの自動注釈 • ParZu(Sennrich et al., 2013)を用いて ルールに基づいて形態論的な注釈をつける • 命令形の動詞を含む文はinformalに分類 5
実験 • 訓練コーパス:OpenSubtitles (映画字幕丁 寧な文の対が48万 丁寧でない文の対が109万 • Groundhogを使用してAttention-based encoder-decoder NMTシステムを訓練
• Side Constraintsに過度な依存をしない ように半分の確率でラベル付けした 6
結果 • informalに限定した翻訳の98%はinformal または中立 • 丁寧な文に限定した翻訳の96%は 丁寧または中立 7
結果 • 参照文をもとにSide Constraintsを与えるオ ラクル実験ではBLEUが3.2改善 8
結果 • Side ConstraintsはNMTにオーバライド されることがある → 弱い制約なため 9
結果 • ランダムサンプルにおいても同様に Side Constraintsが有効である 10
結論 • 丁寧さの注釈を訓練の追加入力として統合し てNMTの敬語生成を制御できる • 丁寧さがユーザに指定される前提であるが 将来はソーステキストから自動的に予測する ことを目指す • 本稿では丁寧さの制御に焦点を当てている
が、幅広い現象にSide Constraintsを適用 できる可能性がある 11