Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
文献紹介: Controlling Politeness in Neural Machine ...
Search
Yumeto Inaoka
July 18, 2017
Technology
0
120
文献紹介: Controlling Politeness in Neural Machine Translation via Side Constraints
2017/07/18の文献紹介で発表
Yumeto Inaoka
July 18, 2017
Tweet
Share
More Decks by Yumeto Inaoka
See All by Yumeto Inaoka
文献紹介: Quantity doesn’t buy quality syntax with neural language models
yumeto
1
150
文献紹介: Open Domain Web Keyphrase Extraction Beyond Language Modeling
yumeto
0
200
文献紹介: Self-Supervised_Neural_Machine_Translation
yumeto
0
130
文献紹介: Comparing and Developing Tools to Measure the Readability of Domain-Specific Texts
yumeto
0
140
文献紹介: PAWS: Paraphrase Adversaries from Word Scrambling
yumeto
0
120
文献紹介: Beyond BLEU: Training Neural Machine Translation with Semantic Similarity
yumeto
0
240
文献紹介: EditNTS: An Neural Programmer-Interpreter Model for Sentence Simplification through Explicit Editing
yumeto
0
300
文献紹介: Decomposable Neural Paraphrase Generation
yumeto
0
200
文献紹介: Analyzing the Limitations of Cross-lingual Word Embedding Mappings
yumeto
0
200
Other Decks in Technology
See All in Technology
アジャイルな開発チームでテスト戦略の話は誰がする? / Who Talks About Test Strategy?
ak1210
1
660
AIエージェント元年@日本生成AIユーザ会
shukob
1
240
JAWS DAYS 2025 アーキテクチャ道場 事前説明会 / JAWS DAYS 2025 briefing document
naospon
0
2.6k
DevinでAI AWSエンジニア製造計画 序章 〜CDKを添えて〜/devin-load-to-aws-engineer
tomoki10
0
190
20250304_赤煉瓦倉庫_DeepSeek_Deep_Dive
hiouchiy
2
110
IoTシステム開発の複雑さを低減するための統合的アーキテクチャ
kentaro
1
120
E2Eテスト自動化入門
devops_vtj
1
100
【詳説】コンテンツ配信 システムの複数機能 基盤への拡張
hatena
0
280
What's new in Go 1.24?
ciarana
1
110
Aurora PostgreSQLがCloudWatch Logsに 出力するログの課金を削減してみる #jawsdays2025
non97
1
230
Cracking the Coding Interview 6th Edition
gdplabs
14
28k
手を動かしてレベルアップしよう!
maruto
0
240
Featured
See All Featured
Rails Girls Zürich Keynote
gr2m
94
13k
Bash Introduction
62gerente
611
210k
How GitHub (no longer) Works
holman
314
140k
Gamification - CAS2011
davidbonilla
80
5.2k
Easily Structure & Communicate Ideas using Wireframe
afnizarnur
193
16k
No one is an island. Learnings from fostering a developers community.
thoeni
21
3.2k
Bootstrapping a Software Product
garrettdimon
PRO
307
110k
StorybookのUI Testing Handbookを読んだ
zakiyama
28
5.5k
Fight the Zombie Pattern Library - RWD Summit 2016
marcelosomers
233
17k
For a Future-Friendly Web
brad_frost
176
9.6k
CoffeeScript is Beautiful & I Never Want to Write Plain JavaScript Again
sstephenson
160
15k
What's in a price? How to price your products and services
michaelherold
244
12k
Transcript
Controlling Politeness in Neural Machine Translation via Side Constraints Rico
Sennrich, Barry Haddow, Alexandra Birch Proceedings of NAACL-HLT 2016, pages 35–40 1 文献紹介(2017/07/18) 自然言語処理研究室 稲岡 夢人
概要 • 敬語のない元言語の翻訳で出力の敬語制御 • 敬語の制御にSide Constraintsを使用 • 英語→ドイツ語において性能が向上 2
NMT with Side Constraints • ニューラルネットに丁寧さを示す追加の 入力機能を与える • テスト時はユーザが丁寧さを入力 •
入力文の最後にトークンとして Side Constraintsを追加 → Attention-based encoder-decoder モデルであればSide Constraintsに 注意を払うことを学習できる 3
訓練セットへの自動注釈 • 事前に訓練セットに注釈をつける • 注釈は文レベルで付ける → ソースとターゲットで単語レベルの 対応を持たないため 4
訓練セットへの自動注釈 • ParZu(Sennrich et al., 2013)を用いて ルールに基づいて形態論的な注釈をつける • 命令形の動詞を含む文はinformalに分類 5
実験 • 訓練コーパス:OpenSubtitles (映画字幕丁 寧な文の対が48万 丁寧でない文の対が109万 • Groundhogを使用してAttention-based encoder-decoder NMTシステムを訓練
• Side Constraintsに過度な依存をしない ように半分の確率でラベル付けした 6
結果 • informalに限定した翻訳の98%はinformal または中立 • 丁寧な文に限定した翻訳の96%は 丁寧または中立 7
結果 • 参照文をもとにSide Constraintsを与えるオ ラクル実験ではBLEUが3.2改善 8
結果 • Side ConstraintsはNMTにオーバライド されることがある → 弱い制約なため 9
結果 • ランダムサンプルにおいても同様に Side Constraintsが有効である 10
結論 • 丁寧さの注釈を訓練の追加入力として統合し てNMTの敬語生成を制御できる • 丁寧さがユーザに指定される前提であるが 将来はソーステキストから自動的に予測する ことを目指す • 本稿では丁寧さの制御に焦点を当てている
が、幅広い現象にSide Constraintsを適用 できる可能性がある 11