Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
データチームの境界を考える
Search
Atsushi Sumita
June 16, 2022
Technology
0
1k
データチームの境界を考える
ナウキャストのストリームアラインドチームと, チームAPIとしてのdbt導入の取り組みについて紹介しています.
Atsushi Sumita
June 16, 2022
Tweet
Share
More Decks by Atsushi Sumita
See All by Atsushi Sumita
LLMによるデータ構造化の精度管理
yummydum
0
120
Redshift Serverless vs Snowflake 徹底比較!
yummydum
1
2.6k
最強?のデータ組織アーキテクチャ
yummydum
2
610
データを開発するためのDataOps
yummydum
1
1k
Jupyter Notebook Ops
yummydum
1
220
SNLP presentation 20190928
yummydum
0
350
Other Decks in Technology
See All in Technology
Wasmのエコシステムを使った ツール作成方法
askua
0
200
PHPからはじめるコンピュータアーキテクチャ / From Scripts to Silicon: A Journey Through the Layers of Computing Hiroshima 2025 Edition
tomzoh
0
140
速習AGENTS.md:5分で精度を上げる "3ブロック" テンプレ
ismk
6
1.7k
CoRL 2025 Survey
harukiabe
1
210
サイバーエージェント流クラウドコスト削減施策「みんなで金塊堀太郎」
kurochan
4
2k
20251014_Pythonを実務で徹底的に使いこなした話
ippei0923
0
210
「改善」ってこれでいいんだっけ?
ukigmo_hiro
0
310
研究開発部メンバーの働き⽅ / Sansan R&D Profile
sansan33
PRO
3
20k
難しいセキュリティ用語をわかりやすくしてみた
yuta3110
0
240
技育祭2025【秋】 企業ピッチ/登壇資料(高橋 悟生)
hacobu
PRO
0
110
LLMアプリの地上戦開発計画と運用実践 / 2025.10.15 GPU UNITE 2025
smiyawaki0820
1
590
AIツールでどこまでデザインを忠実に実装できるのか
oikon48
6
3.5k
Featured
See All Featured
Faster Mobile Websites
deanohume
310
31k
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
32
1.6k
The Art of Delivering Value - GDevCon NA Keynote
reverentgeek
16
1.7k
Speed Design
sergeychernyshev
32
1.2k
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
35
3.2k
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
52
5.6k
The Invisible Side of Design
smashingmag
302
51k
Making the Leap to Tech Lead
cromwellryan
135
9.6k
StorybookのUI Testing Handbookを読んだ
zakiyama
31
6.2k
How to train your dragon (web standard)
notwaldorf
97
6.3k
How to Create Impact in a Changing Tech Landscape [PerfNow 2023]
tammyeverts
55
3k
Keith and Marios Guide to Fast Websites
keithpitt
411
23k
Transcript
© 2015 - 2022 Nowcast Inc. データチームの境界を考える 株式会社ナウキャスト 隅田 敦
1
© 2013 - 2022 Finatext Ltd. 2 目次 これまでのナウキャストのチーム構造 -
データエンジニアが主役となる組織 - チームトポロジー: Stream Aligned Team / Platform Team / チームAPI - Stream Aligned Data Engineering Teamによる効率的な開発 - 課題: チームAPIが整備されていないことによる非効率性 チーム境界とプラットフォームチーム - チームAPIとしてのdbt - Data hub platformに向けた取り組み - Platformチームは中央集権型のデータエンジニアチームではない
© 2013 - 2022 Finatext Ltd. 3 これまでのナウキャストのチーム構造
© 2013 - 2022 Finatext Ltd. 4 データエンジニアが主役となる組織 データの保有側・利用側の双方に価値を提供するAlternative Dataの
Two-Sided Platformを展開
© 2013 - 2022 Finatext Ltd. 5 チームトポロジー: Stream Aligned
Team / Platform Team / チームAPI • Stream Aligned Team ◦ 価値のデリバリーをend to endで担う ◦ 要求探索から本番運用まで他チームへの引き継ぎ無しで行える • Platform Team ◦ Stream Aligned Teamを支援する内部プロダクトの開発を担う ◦ インフラなど下位の機能を横断的に抽象化したツールを提供 • チームAPI ◦ チームとやり取りするための方法を記述した仕様 ◦ コードであれば, ランタイムのエンドポイント, ライブラリ, UI ◦ データの場合はどうか? これを考えるのが本発表の目的
© 2013 - 2022 Finatext Ltd. 6 The Bezos Mandate
(2002) 私とAWSの15年 あるいはThe Bezos Mandateの話 - NRIネットコムBlog
© 2013 - 2022 Finatext Ltd. 7 Stream Aligned Data
Engineering Teamによる効率的な開発 ナウキャストのチームの特徴 • 典型的にはデータソース毎に1つのチーム ◦ 1チームだいたい3~6人ほど • 各チーム内で価値提供に必要な工程が完結 • Terraformによるインフラの構築 • Airflow+PythonによるETLの開発/保守 • Jupyter NotebookによるEDA Stream Alignedなデータエンジニアチーム Stream Alignedであることのメリット • システムのオーナーシップが向上する • 各システムが疎結合に保たれる (Conway's law) • データのドメイン知識が一貫して行き渡る
© 2013 - 2022 Finatext Ltd. 8 課題: チームAPIが整備されていないことによる非効率性 各チームの開発したデータには様々な利用者が存在
• 社内の金融領域に詳しいアナリスト • 社内の他のデータエンジニアリングチーム • ナウキャストのデータを購読している社外の顧客 課題: チームAPIが存在しない 以下項目の整備状況/実装方針がバラバラ • データの置き場所, フォーマット • 品質保証/バージョン管理/ビジネスメタデータ • データ更新の締切に関するSLO 認知負荷/コミュニケーションコストの増大
© 2013 - 2022 Finatext Ltd. 9 チーム境界とプラットフォームチーム
© 2013 - 2022 Finatext Ltd. 10 チームAPIとしてのdbt • yamlを書くだけでデータのテストとドキュメントが手に入る
• 今はsources [3]だけを使用 htmlに render 宣言的なデータのテスト 任意の項目を 追加可能
© 2013 - 2022 Finatext Ltd. 11 Data hub platformに向けた取り組み
チームAPIの下でデータをリリースする場所をdata hubと名付 け, 整備中 • データはs3にparquetで置き, Athenaで参照する • 各データについてdbtでsourcesを定義 • データ/sourcesが更新されたらテストを実行 • renderされたhtmlをs3にホスティング • dbtのmeta tagでSLOを管理 ◦ これを参照して監視システムがSLOをチェック data hubの開発を行うPlatform Teamが必要となる
© 2013 - 2022 Finatext Ltd. 12 Platformチームは中央集権型のデータエンジニアチームではない • 中央集権型はサイロ化やスケーラビリティの低
下に繋がるため望ましくない[2][3][4] • PlatformチームはData Hubへのリリースを支 援するツールの開発が責務 ◦ チームAPIの定義 ◦ ビルド/テスト/デプロイ用のスクリプト ◦ CI/CD用のツール ◦ 監視システム • 各Sourcesの開発/保守は各Stream Aligned Teamの責務
© 2013 - 2022 Finatext Ltd. 13 Reference [1] Team
Topologies [2] 私とAWSの15年 あるいはThe Bezos Mandateの話 - NRIネットコムBlog [3] Sources | dbt Docs [4] How to Move Beyond a Monolithic Data Lake to a Distributed Data Mesh [5] Data Mesh Principles and Logical Architecture [6] Data Management at Scale
© 2013 - 2022 Finatext Ltd. 14 End