Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
データチームの境界を考える
Search
Atsushi Sumita
June 16, 2022
Technology
0
830
データチームの境界を考える
ナウキャストのストリームアラインドチームと, チームAPIとしてのdbt導入の取り組みについて紹介しています.
Atsushi Sumita
June 16, 2022
Tweet
Share
More Decks by Atsushi Sumita
See All by Atsushi Sumita
Redshift Serverless vs Snowflake 徹底比較!
yummydum
1
2.1k
最強?のデータ組織アーキテクチャ
yummydum
2
530
データを開発するためのDataOps
yummydum
1
860
Jupyter Notebook Ops
yummydum
1
200
SNLP presentation 20190928
yummydum
0
320
Other Decks in Technology
See All in Technology
品質マネジメントで抑えておきたい2つのリスクを見分けて未来に備えよう #yapcjapan
makky_tyuyan
0
120
Oracle Database 23ai 新機能#4 Rolling Maintenance
oracle4engineer
PRO
0
140
Low Latency Join Method for Distributed DBMS
yugabytejapan
0
180
LINEヤフー新卒採用 コーディングテスト解説 アルゴリズム問題編
lycorp_recruit_jp
0
13k
From naive to advanced RAG: the complete guide
glaforge
0
250
小さな勉強会の始め方、広げ方、あるいは友達の作り方 / How to Start, Grow, and Build Connections with Small Study Groups
ar_tama
6
3k
それでもやっぱり ExpressRoute が好き!
skmkzyk
0
380
OPENLOGI Company Profile
hr01
0
54k
【㈱アイモバイル】エンジニア向け会社説明資料
imobile
0
470
テストコードの品質を客観的な数値で担保しよう〜Mutation Testのすすめ〜
ysknsid25
12
3.6k
What a Good Platform Looks Like and How to Get There @ Large Financial Organization, Oct 2024
mfpais
PRO
0
100
Azure App Service on Linux の Sidecar に Phi-3 を配置してインテリジェントなアプリケーションを作ってみよう/jazug-anniv14
thara0402
0
520
Featured
See All Featured
Statistics for Hackers
jakevdp
796
220k
Automating Front-end Workflow
addyosmani
1365
200k
How to name files
jennybc
77
99k
Building Your Own Lightsaber
phodgson
102
6k
Building Adaptive Systems
keathley
38
2.2k
For a Future-Friendly Web
brad_frost
174
9.3k
Building a Modern Day E-commerce SEO Strategy
aleyda
38
6.9k
Why You Should Never Use an ORM
jnunemaker
PRO
53
9k
Designing Experiences People Love
moore
138
23k
Embracing the Ebb and Flow
colly
84
4.4k
The Art of Delivering Value - GDevCon NA Keynote
reverentgeek
4
120
Infographics Made Easy
chrislema
239
18k
Transcript
© 2015 - 2022 Nowcast Inc. データチームの境界を考える 株式会社ナウキャスト 隅田 敦
1
© 2013 - 2022 Finatext Ltd. 2 目次 これまでのナウキャストのチーム構造 -
データエンジニアが主役となる組織 - チームトポロジー: Stream Aligned Team / Platform Team / チームAPI - Stream Aligned Data Engineering Teamによる効率的な開発 - 課題: チームAPIが整備されていないことによる非効率性 チーム境界とプラットフォームチーム - チームAPIとしてのdbt - Data hub platformに向けた取り組み - Platformチームは中央集権型のデータエンジニアチームではない
© 2013 - 2022 Finatext Ltd. 3 これまでのナウキャストのチーム構造
© 2013 - 2022 Finatext Ltd. 4 データエンジニアが主役となる組織 データの保有側・利用側の双方に価値を提供するAlternative Dataの
Two-Sided Platformを展開
© 2013 - 2022 Finatext Ltd. 5 チームトポロジー: Stream Aligned
Team / Platform Team / チームAPI • Stream Aligned Team ◦ 価値のデリバリーをend to endで担う ◦ 要求探索から本番運用まで他チームへの引き継ぎ無しで行える • Platform Team ◦ Stream Aligned Teamを支援する内部プロダクトの開発を担う ◦ インフラなど下位の機能を横断的に抽象化したツールを提供 • チームAPI ◦ チームとやり取りするための方法を記述した仕様 ◦ コードであれば, ランタイムのエンドポイント, ライブラリ, UI ◦ データの場合はどうか? これを考えるのが本発表の目的
© 2013 - 2022 Finatext Ltd. 6 The Bezos Mandate
(2002) 私とAWSの15年 あるいはThe Bezos Mandateの話 - NRIネットコムBlog
© 2013 - 2022 Finatext Ltd. 7 Stream Aligned Data
Engineering Teamによる効率的な開発 ナウキャストのチームの特徴 • 典型的にはデータソース毎に1つのチーム ◦ 1チームだいたい3~6人ほど • 各チーム内で価値提供に必要な工程が完結 • Terraformによるインフラの構築 • Airflow+PythonによるETLの開発/保守 • Jupyter NotebookによるEDA Stream Alignedなデータエンジニアチーム Stream Alignedであることのメリット • システムのオーナーシップが向上する • 各システムが疎結合に保たれる (Conway's law) • データのドメイン知識が一貫して行き渡る
© 2013 - 2022 Finatext Ltd. 8 課題: チームAPIが整備されていないことによる非効率性 各チームの開発したデータには様々な利用者が存在
• 社内の金融領域に詳しいアナリスト • 社内の他のデータエンジニアリングチーム • ナウキャストのデータを購読している社外の顧客 課題: チームAPIが存在しない 以下項目の整備状況/実装方針がバラバラ • データの置き場所, フォーマット • 品質保証/バージョン管理/ビジネスメタデータ • データ更新の締切に関するSLO 認知負荷/コミュニケーションコストの増大
© 2013 - 2022 Finatext Ltd. 9 チーム境界とプラットフォームチーム
© 2013 - 2022 Finatext Ltd. 10 チームAPIとしてのdbt • yamlを書くだけでデータのテストとドキュメントが手に入る
• 今はsources [3]だけを使用 htmlに render 宣言的なデータのテスト 任意の項目を 追加可能
© 2013 - 2022 Finatext Ltd. 11 Data hub platformに向けた取り組み
チームAPIの下でデータをリリースする場所をdata hubと名付 け, 整備中 • データはs3にparquetで置き, Athenaで参照する • 各データについてdbtでsourcesを定義 • データ/sourcesが更新されたらテストを実行 • renderされたhtmlをs3にホスティング • dbtのmeta tagでSLOを管理 ◦ これを参照して監視システムがSLOをチェック data hubの開発を行うPlatform Teamが必要となる
© 2013 - 2022 Finatext Ltd. 12 Platformチームは中央集権型のデータエンジニアチームではない • 中央集権型はサイロ化やスケーラビリティの低
下に繋がるため望ましくない[2][3][4] • PlatformチームはData Hubへのリリースを支 援するツールの開発が責務 ◦ チームAPIの定義 ◦ ビルド/テスト/デプロイ用のスクリプト ◦ CI/CD用のツール ◦ 監視システム • 各Sourcesの開発/保守は各Stream Aligned Teamの責務
© 2013 - 2022 Finatext Ltd. 13 Reference [1] Team
Topologies [2] 私とAWSの15年 あるいはThe Bezos Mandateの話 - NRIネットコムBlog [3] Sources | dbt Docs [4] How to Move Beyond a Monolithic Data Lake to a Distributed Data Mesh [5] Data Mesh Principles and Logical Architecture [6] Data Management at Scale
© 2013 - 2022 Finatext Ltd. 14 End