Upgrade to Pro — share decks privately, control downloads, hide ads and more …

SNLP presentation 20190928

Atsushi Sumita
September 28, 2019

SNLP presentation 20190928

Presentation by Atsushi Sumita (Univ. Tokyo, Miyao lab, M1)

Atsushi Sumita

September 28, 2019
Tweet

More Decks by Atsushi Sumita

Other Decks in Research

Transcript

  1. Word2senseの構成 変分推論でと を推定 ◦ 推定はマルチコアCPU1個で5時間 ◦ はやい ◦ の埋め込み の第次元目:

    ◦ 第一項:wがある単語のcontext wordの時に,zがwを生成している確率 ◦ 第二項:前述の生成モデルにおいてwのcontext wordを生成する際にzが選ばれる確率 他にもいくつか後処理を行う ◦ 似た単語の分布を持つsenseを階層クラスタリングでmerge ◦ スパースになるよう絶対値上位個の次元以外は0に置き換え,正規化
  2. 実験結果 Downstream taskで精度評価 ◦ News classification ◦ Noun phrase chunking

    ◦ Sentiment analysis ◦ Question classification 大体既存手法に匹敵する精度
  3. 実験結果: word intrusion task Word intrusion task ◦ 単語の集合から仲間外れ(intruder) を識別出来るか?

    ◦ 各senseで高いweightを割り当てら れている単語上位4個を抽出 ◦ ランダムに選んだ単語(intruder)と 合わせた5個をアノテーターに出題 ◦ 人間が仲間外れを識別出来るなら 解釈性が高いと判断する
  4. WordCtx2sense 文脈Tの単語の生成過程を次のように仮定する ◦ を選び,ここから確率分布 = を得る ◦ から個の単語を生成し,を得る Log perplexity

    を最大化するよう を学習し,元のembeddingを更新 ◦ 初期値は元のembeddingとし,KL距離を正則化項として追加
  5. 実験結果:Word Sense Induction 多義語が含まれた文書群を,意味ごとにクラスタリングするタスク 各文章毎にを学習し, ∗ = k をクラスターのラベルとする 評価指標は次の二つ

    ある二つのinstanceが同じクラスターに属するか否かに関するF-score V-score : homogeneityとcoverageの調和平均 ◦ Homogeneity : 同じラベルを持つinstanceが同じクラスターに入っている割合 ◦ Coverage : 同じクラスターに入っているinstanceが同じラベルを持つ割合
  6. ※ Li, H., Xu, Z., Taylor, G., Studer, C., &

    Goldstein, T. (2018). Visualizing the loss landscape of neural nets. より
  7. まとめ BERTでfine tuningするのが何故有効なのかについて,可視化により調べた結果, ◦ より幅広い局所解が見つかるので, ◦ 学習が容易で汎化性能も良い ◦ 過学習しづらい ◦

    訓練データのloss surfaceとテストデータのloss surfaceに整合性がある ◦ 下層ほど一般的で転移可能性の高い特徴量が含まれている といった事実が示唆された.