Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Prompt FlowによるLLMアプリケーション開発
Search
Yuto Urushima
July 09, 2024
Programming
2
1.7k
Prompt FlowによるLLMアプリケーション開発
Yuto Urushima
July 09, 2024
Tweet
Share
More Decks by Yuto Urushima
See All by Yuto Urushima
Webエンジニアから生成AIエンジニアへ
yuto2000
10
350
LangGraphを用いたマルチエージェント
yuto2000
2
2.5k
Prompt FlowによるLLMOps
yuto2000
1
1.4k
Other Decks in Programming
See All in Programming
Smart Handoff/Pickup ガイド - Claude Code セッション管理
yukiigarashi
0
140
組織で育むオブザーバビリティ
ryota_hnk
0
180
Oxlintはいいぞ
yug1224
5
1.4k
ノイジーネイバー問題を解決する 公平なキューイング
occhi
0
110
Architectural Extensions
denyspoltorak
0
300
インターン生でもAuth0で認証基盤刷新が出来るのか
taku271
0
190
20260127_試行錯誤の結晶を1冊に。著者が解説 先輩データサイエンティストからの指南書 / author's_commentary_ds_instructions_guide
nash_efp
1
980
AI Schema Enrichment for your Oracle AI Database
thatjeffsmith
0
310
AI時代のキャリアプラン「技術の引力」からの脱出と「問い」へのいざない / tech-gravity
minodriven
21
7.4k
AWS re:Invent 2025参加 直前 Seattle-Tacoma Airport(SEA)におけるハードウェア紛失インシデントLT
tetutetu214
2
120
HTTPプロトコル正しく理解していますか? 〜かわいい猫と共に学ぼう。ฅ^•ω•^ฅ ニャ〜
hekuchan
2
690
SourceGeneratorのススメ
htkym
0
200
Featured
See All Featured
How People are Using Generative and Agentic AI to Supercharge Their Products, Projects, Services and Value Streams Today
helenjbeal
1
130
Designing Powerful Visuals for Engaging Learning
tmiket
0
240
Leveraging LLMs for student feedback in introductory data science courses - posit::conf(2025)
minecr
0
150
How to Grow Your eCommerce with AI & Automation
katarinadahlin
PRO
1
110
Into the Great Unknown - MozCon
thekraken
40
2.3k
The Language of Interfaces
destraynor
162
26k
Leading Effective Engineering Teams in the AI Era
addyosmani
9
1.6k
Stop Working from a Prison Cell
hatefulcrawdad
273
21k
From π to Pie charts
rasagy
0
120
The Cult of Friendly URLs
andyhume
79
6.8k
Stewardship and Sustainability of Urban and Community Forests
pwiseman
0
110
svc-hook: hooking system calls on ARM64 by binary rewriting
retrage
1
100
Transcript
Prompt Flowによる LLMアプリケーション開発 宇留嶋勇人
自己紹介 web系エンジニアで、最近はLangChainや Prompt Flowを使った生成AI周りの開発業務を 行ってます。 X: @3anlqblueE ウルシマ ユウト 宇留嶋 勇人
Agenda Prompt Flowとは Prompt Flowでできること LLMアプリケーションの開発 評価、トレース デプロイ まとめ
Agenda Prompt Flowとは Prompt Flowでできること LLMアプリケーションの開発 評価、トレース デプロイ まとめ
= 大規模言語モデル (LLM) によって動作する AI アプ リケーションの開発サイクル全体を合理化するために 設計された開発ツールのこと。 Prompt Flowは、AI
アプリケーションのPoC作成、実 験、デバック、デプロイのプロセスを簡素化する包括 的なソリューションを提供します。 https://learn.microsoft.com/ja-jp/azure/ai-studio/how-to/prompt-flow フロー例 Prompt Flowとは
Prompt Flowとは プロンプト Python処理 コード管理 可視化 Azure AI Studio
Agenda Prompt Flowとは Prompt Flowでできること LLMアプリケーションの開発 評価、トレース デプロイ まとめ
Prompt Flowでできること - フロー、特にLLMとのインタラクションを簡単にデバッグ可 - フローを評価し、品質とパフォーマンスのメトリクスを計算 - テストと評価をCI/CDシステムに統合し、フローの品質を保証 - 選択したサービスプラットフォームにフローをデプロイするか、アプリ
のコードベースに簡単に統合可能 - Azure AI Studioにてチームで共同作業可能 https://microsoft.github.io/promptflow/index.html
Agenda Prompt Flowとは Prompt Flowでできること LLMアプリケーションの開発 評価、トレース デプロイ まとめ
LLMアプリケーションの開発 開発方法 • Azure AI Studio • VS Code 拡張機能
• CLI
LLMアプリケーションの開発 Azure AI Studio Azure AI Studio上で ツール(プロンプトフ ロー)を使う
LLMアプリケーションの開発 VS Code 拡張機能 Azure AI Studio同様に可視 化しながらローカル環境で 開発できる
LLMアプリケーションの開発 CLI フローの初期化、バリデーション、テスト、バッチ実行、トレース、 ビルド、エンドポイント作成 $ pf $ pfazure pfコマンドのAzure AI版
https://microsoft.github.io/promptflow/reference/pf-command-reference.html#
LLMアプリケーションの開発 バリアント(プロンプトチューニング) →生産性を高める、生成の質を高める、比較を容易にする
Agenda Prompt Flowとは Prompt Flowでできること LLMアプリケーションの開発 評価、トレース デプロイ まとめ
評価、トレース 評価 1. 自動評価 2. カスタム評価
評価、トレース 自動評価 Microsoftが監修したメトリックを使うことがで きる • パフォーマンスと品質メトリック ◦ 根拠性、関連性、コヒーレンス、流暢 性、GPTの類似性、F1 •
リスクと安全メトリック ◦ 自傷行為、悪意のある不公平、暴力的、 性的な内容、コンテンツ
評価、トレース カスタム評価 入力値、システムメトリックを出力 評価用フローを作成 (例: 固有表現抽出) ground truthとのマッチ度
評価、トレース トレース OpenTelemetry仕様に従っ て、LLMコールや関数、 LangChainやAutoGenなどの LLMフレームワークをトレー スできるトレース機能を提供 from promptflow.tracing import
start_trace start_trace() https://microsoft.github.io/promptflow/how-to-guides/tracing/index.html
Agenda Prompt Flowとは Prompt Flowでできること LLMアプリケーションの開発 評価、トレース デプロイ まとめ
デプロイ - CLIで開発サーバーデプロイ - Docker - オンラインエンドポイント - 関数として実行
デプロイ - CLIで開発サーバーデプロイ - Docker $ pf flow serve --source
<flow-folder> --port 8080 --host localhost $ curl http://localhost:8080/score --data ‘{“hoge”: … $ pf flow build --source <flow-folder> --output <output-dir> --format docker
デプロイ - オンラインデプロイメント Azure上に仮想マシンとインスタンス数を設定し簡単にデプロイ可能 - 関数として実行(既存アプリと統合し易い) from promptflow.client import load_flow
f = load_flow(“./example_flow/”) data = json.loads(request.get_data()) result_dict = f(**data)
Agenda Prompt Flowとは Prompt Flowでできること LLMアプリケーションの開発 評価、トレース デプロイ まとめ
まとめ Prompt FLowはLLMアプリケーションの開発を支える多様な機能 があり、開発サイクルを合理化している 是非、使ってみてください!