Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Prompt FlowによるLLMアプリケーション開発
Search
Yuto Urushima
July 09, 2024
Programming
2
1.6k
Prompt FlowによるLLMアプリケーション開発
Yuto Urushima
July 09, 2024
Tweet
Share
More Decks by Yuto Urushima
See All by Yuto Urushima
Webエンジニアから生成AIエンジニアへ
yuto2000
2
260
LangGraphを用いたマルチエージェント
yuto2000
2
2k
Prompt FlowによるLLMOps
yuto2000
1
1.3k
Other Decks in Programming
See All in Programming
ZeroETLで始めるDynamoDBとS3の連携
afooooil
0
110
テスト環境にCDを導入してみた
yasaigaoisi
0
100
顧客の画像データをテラバイト単位で配信する 画像サーバを WebP にした際に起こった課題と その対応策 ~継続的な取り組みを添えて~
takutakahashi
4
1.4k
AI時代の『改訂新版 良いコード/悪いコードで学ぶ設計入門』 / ai-good-code-bad-code
minodriven
24
10k
「App Intent」よくわからんけどすごい!
rinngo0302
1
120
抽象化という思考のツール - 理解と活用 - / Abstraction-as-a-Tool-for-Thinking
shin1x1
0
200
レトロゲームから学ぶ通信技術の歴史
kimkim0106
0
120
CDK引数設計道場100本ノック
badmintoncryer
2
530
「テストは愚直&&網羅的に書くほどよい」という誤解 / Test Smarter, Not Harder
munetoshi
1
220
効率的な開発手段として VRTを活用する
ishkawa
1
180
ご注文の差分はこちらですか? 〜 AWS CDK のいろいろな差分検出と安全なデプロイ
konokenj
4
640
マッチングアプリにおけるフリックUIで苦労したこと
yuheiito
0
230
Featured
See All Featured
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
35
2.5k
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
507
140k
StorybookのUI Testing Handbookを読んだ
zakiyama
30
5.9k
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
251
21k
Rails Girls Zürich Keynote
gr2m
95
14k
Practical Orchestrator
shlominoach
189
11k
4 Signs Your Business is Dying
shpigford
184
22k
No one is an island. Learnings from fostering a developers community.
thoeni
21
3.4k
The World Runs on Bad Software
bkeepers
PRO
70
11k
Mobile First: as difficult as doing things right
swwweet
223
9.7k
Into the Great Unknown - MozCon
thekraken
40
1.9k
Stop Working from a Prison Cell
hatefulcrawdad
271
21k
Transcript
Prompt Flowによる LLMアプリケーション開発 宇留嶋勇人
自己紹介 web系エンジニアで、最近はLangChainや Prompt Flowを使った生成AI周りの開発業務を 行ってます。 X: @3anlqblueE ウルシマ ユウト 宇留嶋 勇人
Agenda Prompt Flowとは Prompt Flowでできること LLMアプリケーションの開発 評価、トレース デプロイ まとめ
Agenda Prompt Flowとは Prompt Flowでできること LLMアプリケーションの開発 評価、トレース デプロイ まとめ
= 大規模言語モデル (LLM) によって動作する AI アプ リケーションの開発サイクル全体を合理化するために 設計された開発ツールのこと。 Prompt Flowは、AI
アプリケーションのPoC作成、実 験、デバック、デプロイのプロセスを簡素化する包括 的なソリューションを提供します。 https://learn.microsoft.com/ja-jp/azure/ai-studio/how-to/prompt-flow フロー例 Prompt Flowとは
Prompt Flowとは プロンプト Python処理 コード管理 可視化 Azure AI Studio
Agenda Prompt Flowとは Prompt Flowでできること LLMアプリケーションの開発 評価、トレース デプロイ まとめ
Prompt Flowでできること - フロー、特にLLMとのインタラクションを簡単にデバッグ可 - フローを評価し、品質とパフォーマンスのメトリクスを計算 - テストと評価をCI/CDシステムに統合し、フローの品質を保証 - 選択したサービスプラットフォームにフローをデプロイするか、アプリ
のコードベースに簡単に統合可能 - Azure AI Studioにてチームで共同作業可能 https://microsoft.github.io/promptflow/index.html
Agenda Prompt Flowとは Prompt Flowでできること LLMアプリケーションの開発 評価、トレース デプロイ まとめ
LLMアプリケーションの開発 開発方法 • Azure AI Studio • VS Code 拡張機能
• CLI
LLMアプリケーションの開発 Azure AI Studio Azure AI Studio上で ツール(プロンプトフ ロー)を使う
LLMアプリケーションの開発 VS Code 拡張機能 Azure AI Studio同様に可視 化しながらローカル環境で 開発できる
LLMアプリケーションの開発 CLI フローの初期化、バリデーション、テスト、バッチ実行、トレース、 ビルド、エンドポイント作成 $ pf $ pfazure pfコマンドのAzure AI版
https://microsoft.github.io/promptflow/reference/pf-command-reference.html#
LLMアプリケーションの開発 バリアント(プロンプトチューニング) →生産性を高める、生成の質を高める、比較を容易にする
Agenda Prompt Flowとは Prompt Flowでできること LLMアプリケーションの開発 評価、トレース デプロイ まとめ
評価、トレース 評価 1. 自動評価 2. カスタム評価
評価、トレース 自動評価 Microsoftが監修したメトリックを使うことがで きる • パフォーマンスと品質メトリック ◦ 根拠性、関連性、コヒーレンス、流暢 性、GPTの類似性、F1 •
リスクと安全メトリック ◦ 自傷行為、悪意のある不公平、暴力的、 性的な内容、コンテンツ
評価、トレース カスタム評価 入力値、システムメトリックを出力 評価用フローを作成 (例: 固有表現抽出) ground truthとのマッチ度
評価、トレース トレース OpenTelemetry仕様に従っ て、LLMコールや関数、 LangChainやAutoGenなどの LLMフレームワークをトレー スできるトレース機能を提供 from promptflow.tracing import
start_trace start_trace() https://microsoft.github.io/promptflow/how-to-guides/tracing/index.html
Agenda Prompt Flowとは Prompt Flowでできること LLMアプリケーションの開発 評価、トレース デプロイ まとめ
デプロイ - CLIで開発サーバーデプロイ - Docker - オンラインエンドポイント - 関数として実行
デプロイ - CLIで開発サーバーデプロイ - Docker $ pf flow serve --source
<flow-folder> --port 8080 --host localhost $ curl http://localhost:8080/score --data ‘{“hoge”: … $ pf flow build --source <flow-folder> --output <output-dir> --format docker
デプロイ - オンラインデプロイメント Azure上に仮想マシンとインスタンス数を設定し簡単にデプロイ可能 - 関数として実行(既存アプリと統合し易い) from promptflow.client import load_flow
f = load_flow(“./example_flow/”) data = json.loads(request.get_data()) result_dict = f(**data)
Agenda Prompt Flowとは Prompt Flowでできること LLMアプリケーションの開発 評価、トレース デプロイ まとめ
まとめ Prompt FLowはLLMアプリケーションの開発を支える多様な機能 があり、開発サイクルを合理化している 是非、使ってみてください!