Lock in $30 Savings on PRO—Offer Ends Soon! ⏳
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Prompt FlowによるLLMアプリケーション開発
Search
Yuto Urushima
July 09, 2024
Programming
2
1.6k
Prompt FlowによるLLMアプリケーション開発
Yuto Urushima
July 09, 2024
Tweet
Share
More Decks by Yuto Urushima
See All by Yuto Urushima
Webエンジニアから生成AIエンジニアへ
yuto2000
10
340
LangGraphを用いたマルチエージェント
yuto2000
2
2.3k
Prompt FlowによるLLMOps
yuto2000
1
1.4k
Other Decks in Programming
See All in Programming
認証・認可の基本を学ぼう前編
kouyuume
0
260
これならできる!個人開発のすゝめ
tinykitten
PRO
0
120
「コードは上から下へ読むのが一番」と思った時に、思い出してほしい話
panda728
PRO
39
26k
ゲームの物理 剛体編
fadis
0
370
フルサイクルエンジニアリングをAI Agentで全自動化したい 〜構想と現在地〜
kamina_zzz
0
150
エディターってAIで操作できるんだぜ
kis9a
0
750
Giselleで作るAI QAアシスタント 〜 Pull Requestレビューに継続的QAを
codenote
0
270
Github Copilotのチャット履歴ビューワーを作りました~WPF、dotnet10もあるよ~ #clrh111
katsuyuzu
0
120
Kotlin Multiplatform Meetup - Compose Multiplatform 외부 의존성 아키텍처 설계부터 운영까지
wisemuji
0
110
Cell-Based Architecture
larchanjo
0
140
公共交通オープンデータ × モバイルUX 複雑な運行情報を 『直感』に変換する技術
tinykitten
PRO
0
160
Microservices rules: What good looks like
cer
PRO
0
1.6k
Featured
See All Featured
Un-Boring Meetings
codingconduct
0
160
ピンチをチャンスに:未来をつくるプロダクトロードマップ #pmconf2020
aki_iinuma
128
55k
Git: the NoSQL Database
bkeepers
PRO
432
66k
The Psychology of Web Performance [Beyond Tellerrand 2023]
tammyeverts
49
3.2k
Neural Spatial Audio Processing for Sound Field Analysis and Control
skoyamalab
0
130
AI in Enterprises - Java and Open Source to the Rescue
ivargrimstad
0
1k
How to Build an AI Search Optimization Roadmap - Criteria and Steps to Take #SEOIRL
aleyda
1
1.8k
Utilizing Notion as your number one productivity tool
mfonobong
2
180
HU Berlin: Industrial-Strength Natural Language Processing with spaCy and Prodigy
inesmontani
PRO
0
96
Efficient Content Optimization with Google Search Console & Apps Script
katarinadahlin
PRO
0
240
Abbi's Birthday
coloredviolet
0
3.6k
Context Engineering - Making Every Token Count
addyosmani
9
540
Transcript
Prompt Flowによる LLMアプリケーション開発 宇留嶋勇人
自己紹介 web系エンジニアで、最近はLangChainや Prompt Flowを使った生成AI周りの開発業務を 行ってます。 X: @3anlqblueE ウルシマ ユウト 宇留嶋 勇人
Agenda Prompt Flowとは Prompt Flowでできること LLMアプリケーションの開発 評価、トレース デプロイ まとめ
Agenda Prompt Flowとは Prompt Flowでできること LLMアプリケーションの開発 評価、トレース デプロイ まとめ
= 大規模言語モデル (LLM) によって動作する AI アプ リケーションの開発サイクル全体を合理化するために 設計された開発ツールのこと。 Prompt Flowは、AI
アプリケーションのPoC作成、実 験、デバック、デプロイのプロセスを簡素化する包括 的なソリューションを提供します。 https://learn.microsoft.com/ja-jp/azure/ai-studio/how-to/prompt-flow フロー例 Prompt Flowとは
Prompt Flowとは プロンプト Python処理 コード管理 可視化 Azure AI Studio
Agenda Prompt Flowとは Prompt Flowでできること LLMアプリケーションの開発 評価、トレース デプロイ まとめ
Prompt Flowでできること - フロー、特にLLMとのインタラクションを簡単にデバッグ可 - フローを評価し、品質とパフォーマンスのメトリクスを計算 - テストと評価をCI/CDシステムに統合し、フローの品質を保証 - 選択したサービスプラットフォームにフローをデプロイするか、アプリ
のコードベースに簡単に統合可能 - Azure AI Studioにてチームで共同作業可能 https://microsoft.github.io/promptflow/index.html
Agenda Prompt Flowとは Prompt Flowでできること LLMアプリケーションの開発 評価、トレース デプロイ まとめ
LLMアプリケーションの開発 開発方法 • Azure AI Studio • VS Code 拡張機能
• CLI
LLMアプリケーションの開発 Azure AI Studio Azure AI Studio上で ツール(プロンプトフ ロー)を使う
LLMアプリケーションの開発 VS Code 拡張機能 Azure AI Studio同様に可視 化しながらローカル環境で 開発できる
LLMアプリケーションの開発 CLI フローの初期化、バリデーション、テスト、バッチ実行、トレース、 ビルド、エンドポイント作成 $ pf $ pfazure pfコマンドのAzure AI版
https://microsoft.github.io/promptflow/reference/pf-command-reference.html#
LLMアプリケーションの開発 バリアント(プロンプトチューニング) →生産性を高める、生成の質を高める、比較を容易にする
Agenda Prompt Flowとは Prompt Flowでできること LLMアプリケーションの開発 評価、トレース デプロイ まとめ
評価、トレース 評価 1. 自動評価 2. カスタム評価
評価、トレース 自動評価 Microsoftが監修したメトリックを使うことがで きる • パフォーマンスと品質メトリック ◦ 根拠性、関連性、コヒーレンス、流暢 性、GPTの類似性、F1 •
リスクと安全メトリック ◦ 自傷行為、悪意のある不公平、暴力的、 性的な内容、コンテンツ
評価、トレース カスタム評価 入力値、システムメトリックを出力 評価用フローを作成 (例: 固有表現抽出) ground truthとのマッチ度
評価、トレース トレース OpenTelemetry仕様に従っ て、LLMコールや関数、 LangChainやAutoGenなどの LLMフレームワークをトレー スできるトレース機能を提供 from promptflow.tracing import
start_trace start_trace() https://microsoft.github.io/promptflow/how-to-guides/tracing/index.html
Agenda Prompt Flowとは Prompt Flowでできること LLMアプリケーションの開発 評価、トレース デプロイ まとめ
デプロイ - CLIで開発サーバーデプロイ - Docker - オンラインエンドポイント - 関数として実行
デプロイ - CLIで開発サーバーデプロイ - Docker $ pf flow serve --source
<flow-folder> --port 8080 --host localhost $ curl http://localhost:8080/score --data ‘{“hoge”: … $ pf flow build --source <flow-folder> --output <output-dir> --format docker
デプロイ - オンラインデプロイメント Azure上に仮想マシンとインスタンス数を設定し簡単にデプロイ可能 - 関数として実行(既存アプリと統合し易い) from promptflow.client import load_flow
f = load_flow(“./example_flow/”) data = json.loads(request.get_data()) result_dict = f(**data)
Agenda Prompt Flowとは Prompt Flowでできること LLMアプリケーションの開発 評価、トレース デプロイ まとめ
まとめ Prompt FLowはLLMアプリケーションの開発を支える多様な機能 があり、開発サイクルを合理化している 是非、使ってみてください!