Lock in $30 Savings on PRO—Offer Ends Soon! ⏳
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
みてねのレコメンドを支える技術 / Building 1s Movie of Mitene
Search
_sobataro
August 22, 2018
Technology
0
1.5k
みてねのレコメンドを支える技術 / Building 1s Movie of Mitene
_sobataro
August 22, 2018
Tweet
Share
More Decks by _sobataro
See All by _sobataro
1秒動画の作り方―「家族アルバム みてね」における 動画エンコードパイプラインとその最適化事例 / 1s Movie Under the Hood
_sobataro
1
280
ステンレスのすゝめ / An Encouragement of Stainless Steel
_sobataro
0
730
サーバレスの動画・画像解析プラットフォーム Media Insights Engine さわってみた / Introduce Media Insights Engine: a serverless media analysis framework
_sobataro
1
1.2k
1秒動画のつくりかた・概要編 / Introduction of Mitene Meetup #4
_sobataro
1
1.6k
いい感じの素材選択ロジック / How to select videos for 1sec Movie
_sobataro
1
4.6k
「簡単でつかいやすい」を追求する開発の裏側 〜メディア解析基盤の話〜 / Medium analysis infrastructure to make FamilyAlbum user-friendly
_sobataro
1
1.2k
みてねのプロダクトを改善するエンジニアリング / Improve Family Album Mitene by Engineering
_sobataro
1
1.9k
みてねのレコメンドを支える技術 / Building 1s Movie of Mitene
_sobataro
0
2k
Other Decks in Technology
See All in Technology
たまに起きる外部サービスの障害に備えたり備えなかったりする話
egmc
0
260
ChatGPTで論⽂は読めるのか
spatial_ai_network
11
29k
Bedrock AgentCore Memoryの新機能 (Episode) を試してみた / try Bedrock AgentCore Memory Episodic functionarity
hoshi7_n
0
100
mairuでつくるクレデンシャルレス開発環境 / Credential-less development environment using Mailru
mirakui
5
550
AI 駆動開発勉強会 フロントエンド支部 #1 w/あずもば
1ftseabass
PRO
0
400
IAMユーザーゼロの運用は果たして可能なのか
yama3133
2
490
Strands AgentsとNova 2 SonicでS2Sを実践してみた
yama3133
0
260
AI-DLCを現場にインストールしてみた:プロトタイプ開発で分かったこと・やめたこと
recruitengineers
PRO
2
160
ディメンショナルモデリングを支えるData Vaultについて
10xinc
1
110
Identity Management for Agentic AI 解説
fujie
0
100
生成AI活用の型ハンズオン〜顧客課題起点で設計する7つのステップ
yushin_n
0
240
AI駆動開発における設計思想 認知負荷を下げるフロントエンドアーキテクチャ/ 20251211 Teppei Hanai
shift_evolve
PRO
2
420
Featured
See All Featured
StorybookのUI Testing Handbookを読んだ
zakiyama
31
6.5k
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
12
980
Scaling GitHub
holman
464
140k
Stop Working from a Prison Cell
hatefulcrawdad
273
21k
How to Ace a Technical Interview
jacobian
281
24k
Making the Leap to Tech Lead
cromwellryan
135
9.7k
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
48
9.8k
Documentation Writing (for coders)
carmenintech
77
5.2k
Making Projects Easy
brettharned
120
6.5k
Music & Morning Musume
bryan
46
7k
Six Lessons from altMBA
skipperchong
29
4.1k
Chrome DevTools: State of the Union 2024 - Debugging React & Beyond
addyosmani
9
1k
Transcript
みてねのレコメンドを 支える技術 2018-08-22 Dive into mixi night! #4 みてね事業部
開発グループ コンテンツ開発チーム 松石浩輔 (@_sobataro )
自己紹介 • 松石浩輔 (@_sobataro) • 2016年新卒 ◦ 1年目: みてねエンジニア (アプリ、サーバ、インフラ)
◦ 2年目〜: みてねコンテンツ開発エンジニア (サーバ、インフラ)
None
None
None
None
None
コンテンツ開発チーム
コンテンツ開発チームとは • 自動生成系コンテンツを 開発・運用するチーム • エンジニア3人 提供する機能 • 1秒動画 •
自動提案フォトブック • DVD「1枚にまとめる」機能
コンテンツ開発チームの提供する機能 1秒動画 • 画像・動画を 1秒ずつ繋いだ ダイジェスト動画 自動提案フォトブック • 1ヶ月分の画像から 22枚を選んで提案
DVD「1枚にまとめる」 • 1年分の動画から ディスク1枚 (50分)ぶ んを提案
自動生成・自動提案機能の裏側 1秒動画のケース
最高の1秒動画とは チーム内でヒアリング • 子どもがよく写っている • 成長が感じられる • 盛り上がっている 実装に落とし込むための仮説 •
顔検出された画像・動画? • 時系列順に並べる? • コメント件数が多い? 気をつけること • 仮説の難易度と優先順位 • 検証方法 • データの取り扱い
1秒動画の生成・配信処理 1. 生成対象家族の抽出 2. 素材となる画像・動画の選択 3. 動画ファイルの生成 4. 配信 素材選択ロジック
• アップロードされた画像・動画を事前に解析しておく ◦ 顔検出、人物検出、BGM 検出など ◦ 大規模処理 (最大で37万+件/時間のアップロード、累計10億+件) • 解析結果をもとに点数付け ◦ 点数が高くなるように素材選択 顔検出: 0件 人物検出: 0件 コメント: 0件 ➔ △点 顔検出: 2件 人物検出: 2件 コメント: 3件 ➔ ◯点 顔検出: 1件 人物検出: 1件 コメント: 0件 ➔ ◻点
画像・動画解析基盤 (現行構成) • 画像・動画解析部分を microsevice として切り出している
画像・動画解析基盤 (構築中) • RDB, Redis などインフラを分離してスケーリングを容易に • SageMaker の導入
まとめ
まとめ • みてねではコンテンツ自動生成・自動提案のため ML 技術を活用 ◦ 顔検出、人物検出、BGM 検出など • 大規模な画像・動画解析のため、自前の解析基盤を構築・運用
◦ メインのアプリサーバから基盤を分離中 • 幅広い仕事 ◦ 研究 ◦ 企画・ディレクション ◦ 開発・運用