Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
みてねのレコメンドを支える技術 / Building 1s Movie of Mitene
Search
_sobataro
August 22, 2018
Technology
0
1.4k
みてねのレコメンドを支える技術 / Building 1s Movie of Mitene
_sobataro
August 22, 2018
Tweet
Share
More Decks by _sobataro
See All by _sobataro
1秒動画の作り方―「家族アルバム みてね」における 動画エンコードパイプラインとその最適化事例 / 1s Movie Under the Hood
_sobataro
1
250
ステンレスのすゝめ / An Encouragement of Stainless Steel
_sobataro
0
720
サーバレスの動画・画像解析プラットフォーム Media Insights Engine さわってみた / Introduce Media Insights Engine: a serverless media analysis framework
_sobataro
1
1.2k
1秒動画のつくりかた・概要編 / Introduction of Mitene Meetup #4
_sobataro
1
1.6k
いい感じの素材選択ロジック / How to select videos for 1sec Movie
_sobataro
1
4.5k
「簡単でつかいやすい」を追求する開発の裏側 〜メディア解析基盤の話〜 / Medium analysis infrastructure to make FamilyAlbum user-friendly
_sobataro
1
1.2k
みてねのプロダクトを改善するエンジニアリング / Improve Family Album Mitene by Engineering
_sobataro
1
1.9k
みてねのレコメンドを支える技術 / Building 1s Movie of Mitene
_sobataro
0
1.9k
Other Decks in Technology
See All in Technology
AI関数が早くなったので試してみよう
kumakura
0
330
【新卒研修資料】数理最適化 / Mathematical Optimization
brainpadpr
29
14k
Oracle Exadata Database Service on Cloud@Customer X11M (ExaDB-C@C) サービス概要
oracle4engineer
PRO
2
6.4k
Amazon Bedrock AgentCoreのフロントエンドを探す旅 (Next.js編)
kmiya84377
1
160
結局QUICで通信は速くなるの?
kota_yata
8
7.4k
Lambda management with ecspresso and Terraform
ijin
2
170
Backlog AI アシスタントが切り開く未来
vvatanabe
1
160
React Server ComponentsでAPI不要の開発体験
polidog
PRO
0
330
僕たちが「開発しやすさ」を求め 模索し続けたアーキテクチャ #アーキテクチャ勉強会_findy
bengo4com
0
2.5k
Amazon Q と『音楽』-ゲーム音楽もAmazonQで作成してみた感想-
senseofunity129
0
160
Claude Codeから我々が学ぶべきこと
oikon48
10
2.8k
LLM 機能を支える Langfuse / ClickHouse のサーバレス化
yuu26
9
2.6k
Featured
See All Featured
Art, The Web, and Tiny UX
lynnandtonic
301
21k
Bootstrapping a Software Product
garrettdimon
PRO
307
110k
YesSQL, Process and Tooling at Scale
rocio
173
14k
Build The Right Thing And Hit Your Dates
maggiecrowley
37
2.8k
Fight the Zombie Pattern Library - RWD Summit 2016
marcelosomers
234
17k
How to Ace a Technical Interview
jacobian
278
23k
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
50
5.5k
It's Worth the Effort
3n
186
28k
Navigating Team Friction
lara
188
15k
Into the Great Unknown - MozCon
thekraken
40
2k
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
PRO
23
1.4k
Building a Modern Day E-commerce SEO Strategy
aleyda
43
7.4k
Transcript
みてねのレコメンドを 支える技術 2018-08-22 Dive into mixi night! #4 みてね事業部
開発グループ コンテンツ開発チーム 松石浩輔 (@_sobataro )
自己紹介 • 松石浩輔 (@_sobataro) • 2016年新卒 ◦ 1年目: みてねエンジニア (アプリ、サーバ、インフラ)
◦ 2年目〜: みてねコンテンツ開発エンジニア (サーバ、インフラ)
None
None
None
None
None
コンテンツ開発チーム
コンテンツ開発チームとは • 自動生成系コンテンツを 開発・運用するチーム • エンジニア3人 提供する機能 • 1秒動画 •
自動提案フォトブック • DVD「1枚にまとめる」機能
コンテンツ開発チームの提供する機能 1秒動画 • 画像・動画を 1秒ずつ繋いだ ダイジェスト動画 自動提案フォトブック • 1ヶ月分の画像から 22枚を選んで提案
DVD「1枚にまとめる」 • 1年分の動画から ディスク1枚 (50分)ぶ んを提案
自動生成・自動提案機能の裏側 1秒動画のケース
最高の1秒動画とは チーム内でヒアリング • 子どもがよく写っている • 成長が感じられる • 盛り上がっている 実装に落とし込むための仮説 •
顔検出された画像・動画? • 時系列順に並べる? • コメント件数が多い? 気をつけること • 仮説の難易度と優先順位 • 検証方法 • データの取り扱い
1秒動画の生成・配信処理 1. 生成対象家族の抽出 2. 素材となる画像・動画の選択 3. 動画ファイルの生成 4. 配信 素材選択ロジック
• アップロードされた画像・動画を事前に解析しておく ◦ 顔検出、人物検出、BGM 検出など ◦ 大規模処理 (最大で37万+件/時間のアップロード、累計10億+件) • 解析結果をもとに点数付け ◦ 点数が高くなるように素材選択 顔検出: 0件 人物検出: 0件 コメント: 0件 ➔ △点 顔検出: 2件 人物検出: 2件 コメント: 3件 ➔ ◯点 顔検出: 1件 人物検出: 1件 コメント: 0件 ➔ ◻点
画像・動画解析基盤 (現行構成) • 画像・動画解析部分を microsevice として切り出している
画像・動画解析基盤 (構築中) • RDB, Redis などインフラを分離してスケーリングを容易に • SageMaker の導入
まとめ
まとめ • みてねではコンテンツ自動生成・自動提案のため ML 技術を活用 ◦ 顔検出、人物検出、BGM 検出など • 大規模な画像・動画解析のため、自前の解析基盤を構築・運用
◦ メインのアプリサーバから基盤を分離中 • 幅広い仕事 ◦ 研究 ◦ 企画・ディレクション ◦ 開発・運用