Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
みてねのレコメンドを支える技術 / Building 1s Movie of Mitene
Search
_sobataro
September 05, 2018
Technology
0
1.9k
みてねのレコメンドを支える技術 / Building 1s Movie of Mitene
_sobataro
September 05, 2018
Tweet
Share
More Decks by _sobataro
See All by _sobataro
1秒動画の作り方―「家族アルバム みてね」における 動画エンコードパイプラインとその最適化事例 / 1s Movie Under the Hood
_sobataro
1
240
ステンレスのすゝめ / An Encouragement of Stainless Steel
_sobataro
0
710
サーバレスの動画・画像解析プラットフォーム Media Insights Engine さわってみた / Introduce Media Insights Engine: a serverless media analysis framework
_sobataro
1
1.1k
1秒動画のつくりかた・概要編 / Introduction of Mitene Meetup #4
_sobataro
1
1.6k
いい感じの素材選択ロジック / How to select videos for 1sec Movie
_sobataro
1
4.5k
「簡単でつかいやすい」を追求する開発の裏側 〜メディア解析基盤の話〜 / Medium analysis infrastructure to make FamilyAlbum user-friendly
_sobataro
1
1.2k
みてねのプロダクトを改善するエンジニアリング / Improve Family Album Mitene by Engineering
_sobataro
1
1.9k
みてねのレコメンドを支える技術 / Building 1s Movie of Mitene
_sobataro
0
1.4k
Other Decks in Technology
See All in Technology
本部長の代わりに提案書レビュー! KDDI営業が毎日使うAIエージェント「A-BOSS」開発秘話
minorun365
PRO
14
1.9k
評価の納得感を2段階高める「構造化フィードバック」
aloerina
1
230
RubyOnRailsOnDevin+α / DevinMeetupJapan#2
ginkouno
0
640
「実体」で築く共通認識: 開発現場のコミュニケーション最適化 / Let's Get on the Same Page with Concrete Artifacts: Optimization of Communication in dev teams
kazizi55
0
150
Rubyで作る論理回路シミュレータの設計の話 - Kashiwa.rb #12
kozy4324
1
320
上長や社内ステークホルダーに対する解像度を上げて、より良い補完関係を築く方法 / How-to-increase-resolution-and-build-better-complementary-relationships-with-your-bosses-and-internal-stakeholders
madoxten
13
7.8k
型システムを知りたい人のための型検査器作成入門
mame
15
3.9k
Amplifyとゼロからはじめた AIコーディング 成果と展望
mkdev10
1
310
自分を理解するAI時代の準備 〜マイプロフィールMCPの実装〜
edo_m18
0
110
Tensix Core アーキテクチャ解説
tenstorrent_japan
0
360
ユーザーのプロフィールデータを活用した推薦精度向上の取り組み
yudai00
0
420
産業機械をElixirで制御する
kikuyuta
0
170
Featured
See All Featured
Put a Button on it: Removing Barriers to Going Fast.
kastner
60
3.9k
Chrome DevTools: State of the Union 2024 - Debugging React & Beyond
addyosmani
6
690
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
16
930
Making Projects Easy
brettharned
116
6.2k
Building Adaptive Systems
keathley
43
2.6k
Rails Girls Zürich Keynote
gr2m
94
14k
Code Reviewing Like a Champion
maltzj
524
40k
Typedesign – Prime Four
hannesfritz
42
2.7k
Designing for humans not robots
tammielis
253
25k
The Power of CSS Pseudo Elements
geoffreycrofte
77
5.8k
The Psychology of Web Performance [Beyond Tellerrand 2023]
tammyeverts
48
2.8k
Fight the Zombie Pattern Library - RWD Summit 2016
marcelosomers
233
17k
Transcript
みてねのレコメンドを 支える技術 2018-09-05 みてねの Meetup #2 for サーバーサイド/SRE みてね事業部
開発グループ コンテンツ開発チーム 松石浩輔 (@_sobataro )
自己紹介 • 松石浩輔 (@_sobataro) • 2016年新卒 ◦ 1年目: みてねエンジニア (アプリ、サーバ、インフラ)
◦ 2年目〜: みてねコンテンツ開発エンジニア (サーバ、インフラ) • 趣味: 旅行、写真など 2
3
4
5
コンテンツ開発チーム 6
コンテンツ開発チームとは • 機械学習技術をもちいた 自動生成系コンテンツを 研究開発・運用するチーム • エンジニア3人 ◦ 研究寄り 1名
◦ 開発寄り 2名 7
コンテンツ開発チームの提供する機能 1秒動画 • 画像・動画を 1秒ずつ繋いだ ダイジェスト動画 自動提案フォトブック • 1ヶ月分の画像から 22枚を選んで提案
DVD「1枚にまとめる」 • 1年分の動画から ディスク1枚 (50分) ぶんを提案 8
コンテンツ開発チームの仕事 1. 企画・研究 • 機械学習技術により 新しい価値を提供できないか? • 最新の研究成果を サービスに活用できないか? 2.
要件定義 • プロダクトオーナ、デザイナ などと要件を調整する • 実現可能性とのバランス 3. 設計 • アーキテクチャを検討 • チーム内外でレビュー 4. 実装 • Ruby, Python で実装 • チーム内外でレビュー 5. 運用 • 監視、リファクタなど 9
コンテンツ自動生成のしくみ 10 〜1秒動画のケース〜
コンテンツ自動生成のしくみ そもそも1秒動画とは • 画像・動画を1秒ずつ繋いだダイジェストムービー • 3ヶ月に1本を自動生成して配信 • サンプル動画 1秒動画の生成・配信処理 1.
生成対象家族の抽出 2. 素材となる画像・動画の選択 3. 動画ファイルの生成 4. 配信 11
1秒動画の生成・配信処理 1. 生成対象家族の抽出 2. 素材となる画像・動画の選択 3. 動画ファイルの生成 4. 配信 12
1秒動画の生成・配信処理 〜 1. 生成対象家族の抽出 • 今日はどの家族に1秒動画を生成するか抽出 • アプリサーバの DB を
BigQuery に転送しておき SQL クエリ一発で抽出 ◦ クオリティの高い動画が生成できる家族を優先的に抽出 ◦ アプリの対応バージョンを持っていない家族は除外 ◦ などの細かい条件あり ◦ 数万家族を1分以内で抽出 13
1秒動画の生成・配信処理 1. 生成対象家族の抽出 2. 素材となる画像・動画の選択 3. 動画ファイルの生成 4. 配信 14
1秒動画の生成・配信処理 〜 2. 素材となる画像・動画の選択 • みてねにアップロードされる画像・動画全件 (6,900万件/月) を事前に解析 ◦ 顔検出、人物検出、BGM
検出、壊れ動画検出、…… • 解析結果に基づく独自のレコメンドロジック ◦ 顔がよく写っている、コメントが盛り上がっている、などなど ◦ プロダクトオーナと点数付けをチューニング 15 顔検出: 0件 人物検出: 0件 コメント: 0件 ➔ △点 顔検出: 2件 人物検出: 2件 コメント: 3件 ➔ ◯点 顔検出: 1件 人物検出: 1件 コメント: 0件 ➔ ◻点
画像・動画解析基盤 (現行構成) • 画像・動画解析部分を microsevice として切り出している 16
画像・動画解析基盤 (構築中) • RDB, Redis などインフラを分離してスケーリングを容易に • SageMaker の導入 17
1秒動画の生成・配信処理 1. 生成対象家族の抽出 2. 素材となる画像・動画の選択 3. 動画ファイルの生成 4. 配信 18
1秒動画の生成・配信処理 3. 動画ファイルの生成 • ffmpeg でひたすら編集 (切り出し、結合、エフェクトなどなど) • transcoder: 動画編集用
microservice ◦ Amazon Elastic Transcoder みたいなやつ ◦ DVD の生産にも利用 4. 配信 • 現地時間のよき時間にプッシュ通知を飛ばして配信 19
まとめ 20
まとめ • コンテンツ開発チーム = 機械学習技術をもちいた自動生成系コンテンツを研究開発・運用するチーム • みてねではコンテンツ自動生成・自動提案のため ML 技術を活用 ◦
ありふれたもの: 顔検出、人物検出など ◦ 独自の解析項目: BGM 検出、壊れ動画検出など • 大規模 (6,900万件/月) な画像・動画解析のため、 自前の解析基盤を構築・運用 ◦ メインのアプリサーバから基盤を分離中 21