Upgrade to Pro — share decks privately, control downloads, hide ads and more …

TiO2-Graphene Interfaces

TiO2-Graphene Interfaces

A presentation given at the Fall 2015 AICHE meeting.

N. Aaron Deskins

November 10, 2015
Tweet

More Decks by N. Aaron Deskins

Other Decks in Research

Transcript

  1. Brief Intro to Photocatalyis _ Valence Band Conduction Band e-

    hν h+ Œ photoexcitation  charge diffusion, trapping, and recombination Ž molecular adsorption and reaction + TiO2 Nanoparticle H+ Photocatalytic Process Overview R R’ C O O O C R R’ O2 O2 R· O O C R’ •  Water/air treatment - Photocatalytic organic oxidation •  Water splitting
  2. State of the Field Various Density Functional Theory Results Available

    Graphene à Rutile Electron Transfer •  Du, Y.H. Ng, N.J. Bell, Z. Zhu, R. Amal, S.C. Smith J. Phys. Chem. Lett. 2 (2011) 894–899. •  R. Long, N.J. English, O. V Prezhdo, J. Am. Chem. Soc. 134 (2012) 14238– 48. Anatase à Graphene Electron Transfer •  H. Gao, X. Li, J. Lv, G. Liu, J. Phys. Chem. C. 117 (2013) 16022–16027. Graphene à Anatase Electron Transfer •  X. Li, H. Gao, G. Liu, Comput. Theor. Chem. 1025 (2013) 30–34. •  Y. Masuda, G. Giorgi, K. Yamashita, Phys. Status Solidi. 251 (2014) 1471– 1479. TiO2 Gap States Improve Photoexcitation •  N. Yang, Y. Liu, H. Wen, Z. Tang, H. Zhao, Y. Li, et al, ACS Nano. 7 (2013) 1504–12. Graphene + small TiO2 Pristine Graphene + TiO2
  3. Non-Uniform Graphene/Relevance of Defects reduced graphene oxide Graphite oxidation à

    separation à reduction (thermal, chemical) Reality: Defect + oxygen containing groups S. Pei, H.-M. Cheng, Carbon 50 (2012) 3210–3228.
  4. Graphene/TiO2 Models (TiO2 )n Clusters •  N= 1 to 8

    from Qu and Kroes, The Journal of Physical Chemistry B, 2006, 110, 8998-9007. •  N= 15 from Hamad et al. The Journal of Physical Chemistry B, 2005, 109, 15741-15748. (6x6) surface a – Pristine graphene b – Graphene with C vacancy c – Graphene with epoxide d – Graphene with hydroxyl
  5. TiO2 over Pristine Graphene Surface/Cluster Distances 2.4 to 2.9 Å

    Previous DFT Results for n = 1 -0.8 eV1 -1.22 eV2 -1.27 eV3 -1.55 eV4 1 M. Favaro, S. Agnoli, C. Di Valentin, C. Mattevi, M. Cattelan, L. Artiglia, E. Magnano, F. Bondino, S. Nappini and G. Granozzi, Carbon, 2014, 68, 319-329. 2 S. Ayissi, P. A. Charpentier, N. Farhangi, J. A. Wood, K. Palotás and W. A. Hofer, The Journal of Physical Chemistry C, 2013, 117, 25424-25432. 3 E. H. Song and Y. F. Zhu, Nanoscience and Nanotechnology Letters, 2013, 5, 198-203. 4 M. I. Rojas and E. P. M. Leiva, Physical Review B, 2007, 76, 155415. 1 eV = 96.5 kJ/mol
  6. What binds TiO2 to graphene? TiO2 binding – no site

    preference! van der Waals forces play key role in binding TiO2 1 eV = 96.5 kJ/mol
  7. Defects Affect Transitions Pure Graphene: graphene à TiO2 C Vacancy:

    graphene ßà TiO2 Epoxide: graphene ß TiO2 Hydroxyl: graphene ß TiO2
  8. Summary of the work •  Realistic graphene surfaces and high-level

    molecular model •  Pure Graphene-TiO2 interactions dominated by van der Waals forces •  Graphene defects can serve as binding/anchor sites for TiO2 •  Defects can affect electronic transitions between graphene-TiO2 Graphene TiO2 Defect Phys. Chem. Chem. Phys., 2015, Advance Article, DOI: 10.1039/C5CP04073F
  9. Acknowledgments/Co-Authors Brandon Bukowski We wish to thank: Sia Najafi, WPI,

    for Computer Support Environmental Molecular Science Laboratory (EMSL) at Pacific Northwest National Laboratory in Richland, WA for providing computational resources. EMSL is a DOE Office of Science User Facility sponsored by the Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory.
  10. Computational Method-Density Functional Theory ¨ CP2K for Geometry Optimization ¨ Gamma-point k-

    point sampling ¨ Dual Basis Set - Gaussian and Plane wave (GPW) Method ¨ GGA (PBE) Exchange Correlation Functional ¨ van der Waals corrections – method of Grimme ¨ VASP for single- point electronic structure ¨ 4x4x1 kpt mesh ¨ Plane Wave Basis ¨ DFT+U to correct self-interaction errors ¨ Density of states, electronic charge
  11. Calculated Bader Charges Surface Type Cluster Size (n) Pristine graphene

    Graphene with C vacancy Graphene with epoxide Graphene with hydroxyl 1 -0.03 -0.11 -0.90 -0.43 3 -0.14 -0.02 -1.17 -0.83 5 -0.08 -0.23 -1.32 -0.63 8 -0.07 -0.15 -1.29 -0.86 15 -0.27 -0.56 -1.29 -0.80 ! C Vacancy Epoxide Hydroxyl 1 eV = 96.5 kJ/mol