Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
ウェブ最適化からはじめる機械学習 8章
Search
Masafumi Abeta
August 18, 2021
Programming
0
48
ウェブ最適化からはじめる機械学習 8章
「ウェブ最適化からはじめる機械学習」輪講会で発表した資料です。
Masafumi Abeta
August 18, 2021
Tweet
Share
More Decks by Masafumi Abeta
See All by Masafumi Abeta
Pythonのパッケージマネージャー「uv」
abeta
0
300
GPTモデルでキャラクター設定する際の課題
abeta
0
310
GPTをLINEで使えるようにして布教した
abeta
0
170
【Nishika】プリント基板の電子部品検出
abeta
0
310
初心者向けChatGPT入門
abeta
0
230
GPT Short Talk
abeta
0
130
拡散モデルについて少しだけ
abeta
0
62
動的計画モデル
abeta
0
160
物体追跡
abeta
0
290
Other Decks in Programming
See All in Programming
CSC509 Lecture 02
javiergs
PRO
0
410
uniqueパッケージの内部実装を支えるweak pointerの話
magavel
0
940
CSC509 Lecture 04
javiergs
PRO
0
300
『毎日の移動』を支えるGoバックエンド内製開発
yutautsugi
2
210
Back to the Future: Let me tell you about the ACP protocol
terhechte
0
130
Your Perfect Project Setup for Angular @BASTA! 2025 in Mainz
manfredsteyer
PRO
0
140
開発者への寄付をアプリ内課金として実装する時の気の使いどころ
ski
0
360
CSC509 Lecture 03
javiergs
PRO
0
330
株式会社 Sun terras カンパニーデック
sunterras
0
250
CSC509 Lecture 01
javiergs
PRO
1
430
The Flutter Journey of Building a Live Streaming App — With a Side of Performance Tuning
u503
1
100
Building, Deploying, and Monitoring Ruby Web Applications with Falcon (Kaigi on Rails 2025)
ioquatix
3
1.1k
Featured
See All Featured
Code Reviewing Like a Champion
maltzj
525
40k
Large-scale JavaScript Application Architecture
addyosmani
514
110k
Designing Dashboards & Data Visualisations in Web Apps
destraynor
231
53k
The Language of Interfaces
destraynor
162
25k
The Straight Up "How To Draw Better" Workshop
denniskardys
237
140k
Product Roadmaps are Hard
iamctodd
PRO
54
11k
How to Create Impact in a Changing Tech Landscape [PerfNow 2023]
tammyeverts
54
3k
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
PRO
23
1.5k
Writing Fast Ruby
sferik
629
62k
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
32
1.6k
We Have a Design System, Now What?
morganepeng
53
7.8k
GraphQLの誤解/rethinking-graphql
sonatard
73
11k
Transcript
XX University ウェブ最適化ではじめる機械学習 8章 2021.08 Abeta
2 8.1 短期的な評価と⻑期的な評価 8.1.1 リピートユーザを考慮した最適化 8.2 解空間のデザイン 8.3 ウェブサイト以外への応⽤
3 8.1 短期的な評価と⻑期的な評価 8.1.1 リピートユーザを考慮した最適化 8.2 解空間のデザイン 8.3 ウェブサイト以外への応⽤
4 8.1 短期的な評価と⻑期的な評価 8.1.1 リピートユーザを考慮した最適化 8.2 解空間のデザイン 8.3 ウェブサイト以外への応⽤
5 ユーザが⽇常的に使うツールで、ユーザの即時的な反応のみに着⽬すると、⻑期的な収益が下がる場合がある。 例)googleで広告表⽰を多くした→ユーザの使い勝⼿が悪くなり⻑期的には減収。 ⻑期的スパンで計測される指標も考慮する必要あり。 ⻑期的指標の評価には時間がかる。 ⼀つのアプローチとして、短期的な指標・特徴量から⻑期的指標を予測する機械学習モデルを作成することが ある。 𝜃 = 𝛼
+ 𝛽! 𝑥"#$%&%'()*% + 𝛽+ 𝑥,()#-)./(.%01()2-23
6 8.1 短期的な評価と⻑期的な評価 8.1.1 リピートユーザを考慮した最適化 8.2 解空間のデザイン 8.3 ウェブサイト以外への応⽤
7 バンディット問題ではユーザの状態は1つ、すなわち考慮されていなかった。ユーザの⾏動は新規やリピータ といった「状態」によって異なると考えられる。 ユーザの状態を扱う⼀つのアプローチとして強化学習がある。強化学習では最初から状態の遷移確率 𝒫(𝑠4 |𝑠45! )が含まれている。
8 8.1 短期的な評価と⻑期的な評価 8.1.1 リピートユーザを考慮した最適化 8.2 解空間のデザイン 8.3 ウェブサイト以外への応⽤
9 今回は解空間の検討を⼈間で⾏った(HLS空間、彩度100%)。これは⾊に対する知識を⽤いて暗黙にいくつ かの仮定を置いている。⼈間が思いつかないような選択肢を排除してしまっている。 ⼀⽅で、解空間の制約を無くすと解空間が膨⼤となって問題を解けない。 ⼀つのアプローチとして、解空間を⼩さい空間に圧縮してしまう⽅法がある。具体的には変分オートエンコー ダが使⽤できる。
10 8.1 短期的な評価と⻑期的な評価 8.1.1 リピートユーザを考慮した最適化 8.2 解空間のデザイン 8.3 ウェブサイト以外への応⽤
11 今回の⼿法の特徴 • ⼈間との相互作⽤をもとにソフトウェアの最適な状態を探す • ブラックボックス関数の最適化 適⽤のための条件 • 提供するサービスを即座に変更できること •
サービスに対するユーザの反応が常に計測できること IoTによってユーザの反応が即座に得られるようになると期待できる。反応に応じて提供するものを変更する ことで、提供物がサービス化していると考えられる。