$30 off During Our Annual Pro Sale. View Details »
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
ウェブ最適化からはじめる機械学習 8章
Search
Masafumi Abeta
August 18, 2021
Programming
0
49
ウェブ最適化からはじめる機械学習 8章
「ウェブ最適化からはじめる機械学習」輪講会で発表した資料です。
Masafumi Abeta
August 18, 2021
Tweet
Share
More Decks by Masafumi Abeta
See All by Masafumi Abeta
Pythonのパッケージマネージャー「uv」
abeta
0
330
GPTモデルでキャラクター設定する際の課題
abeta
0
330
GPTをLINEで使えるようにして布教した
abeta
0
180
【Nishika】プリント基板の電子部品検出
abeta
0
320
初心者向けChatGPT入門
abeta
0
240
GPT Short Talk
abeta
0
130
拡散モデルについて少しだけ
abeta
0
66
動的計画モデル
abeta
0
170
物体追跡
abeta
0
310
Other Decks in Programming
See All in Programming
AIエージェントを活かすPM術 AI駆動開発の現場から
gyuta
0
230
React Native New Architecture 移行実践報告
taminif
1
130
【レイトレ合宿11】kagayaki_v4
runningoutrate
0
220
手軽に積ん読を増やすには?/読みたい本と付き合うには?
o0h
PRO
1
140
20251127_ぼっちのための懇親会対策会議
kokamoto01_metaps
2
400
ViewファーストなRailsアプリ開発のたのしさ
sugiwe
0
390
Socio-Technical Evolution: Growing an Architecture and Its Organization for Fast Flow
cer
PRO
0
260
CSC509 Lecture 14
javiergs
PRO
0
220
[SF Ruby Conf 2025] Rails X
palkan
0
430
CloudNative Days Winter 2025: 一週間で作る低レイヤコンテナランタイム
ternbusty
7
1.9k
モダンJSフレームワークのビルドプロセス 〜なぜReactは503行、Svelteは12行なのか〜
fuuki12
0
190
FluorTracer / RayTracingCamp11
kugimasa
0
180
Featured
See All Featured
jQuery: Nuts, Bolts and Bling
dougneiner
65
8.1k
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
35
2.3k
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
48
9.8k
Bash Introduction
62gerente
615
210k
Speed Design
sergeychernyshev
33
1.4k
Six Lessons from altMBA
skipperchong
29
4.1k
Reflections from 52 weeks, 52 projects
jeffersonlam
355
21k
Optimising Largest Contentful Paint
csswizardry
37
3.5k
XXLCSS - How to scale CSS and keep your sanity
sugarenia
249
1.3M
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
12
960
Facilitating Awesome Meetings
lara
57
6.7k
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
PRO
196
69k
Transcript
XX University ウェブ最適化ではじめる機械学習 8章 2021.08 Abeta
2 8.1 短期的な評価と⻑期的な評価 8.1.1 リピートユーザを考慮した最適化 8.2 解空間のデザイン 8.3 ウェブサイト以外への応⽤
3 8.1 短期的な評価と⻑期的な評価 8.1.1 リピートユーザを考慮した最適化 8.2 解空間のデザイン 8.3 ウェブサイト以外への応⽤
4 8.1 短期的な評価と⻑期的な評価 8.1.1 リピートユーザを考慮した最適化 8.2 解空間のデザイン 8.3 ウェブサイト以外への応⽤
5 ユーザが⽇常的に使うツールで、ユーザの即時的な反応のみに着⽬すると、⻑期的な収益が下がる場合がある。 例)googleで広告表⽰を多くした→ユーザの使い勝⼿が悪くなり⻑期的には減収。 ⻑期的スパンで計測される指標も考慮する必要あり。 ⻑期的指標の評価には時間がかる。 ⼀つのアプローチとして、短期的な指標・特徴量から⻑期的指標を予測する機械学習モデルを作成することが ある。 𝜃 = 𝛼
+ 𝛽! 𝑥"#$%&%'()*% + 𝛽+ 𝑥,()#-)./(.%01()2-23
6 8.1 短期的な評価と⻑期的な評価 8.1.1 リピートユーザを考慮した最適化 8.2 解空間のデザイン 8.3 ウェブサイト以外への応⽤
7 バンディット問題ではユーザの状態は1つ、すなわち考慮されていなかった。ユーザの⾏動は新規やリピータ といった「状態」によって異なると考えられる。 ユーザの状態を扱う⼀つのアプローチとして強化学習がある。強化学習では最初から状態の遷移確率 𝒫(𝑠4 |𝑠45! )が含まれている。
8 8.1 短期的な評価と⻑期的な評価 8.1.1 リピートユーザを考慮した最適化 8.2 解空間のデザイン 8.3 ウェブサイト以外への応⽤
9 今回は解空間の検討を⼈間で⾏った(HLS空間、彩度100%)。これは⾊に対する知識を⽤いて暗黙にいくつ かの仮定を置いている。⼈間が思いつかないような選択肢を排除してしまっている。 ⼀⽅で、解空間の制約を無くすと解空間が膨⼤となって問題を解けない。 ⼀つのアプローチとして、解空間を⼩さい空間に圧縮してしまう⽅法がある。具体的には変分オートエンコー ダが使⽤できる。
10 8.1 短期的な評価と⻑期的な評価 8.1.1 リピートユーザを考慮した最適化 8.2 解空間のデザイン 8.3 ウェブサイト以外への応⽤
11 今回の⼿法の特徴 • ⼈間との相互作⽤をもとにソフトウェアの最適な状態を探す • ブラックボックス関数の最適化 適⽤のための条件 • 提供するサービスを即座に変更できること •
サービスに対するユーザの反応が常に計測できること IoTによってユーザの反応が即座に得られるようになると期待できる。反応に応じて提供するものを変更する ことで、提供物がサービス化していると考えられる。