Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
ウェブ最適化からはじめる機械学習 8章
Search
Masafumi Abeta
August 18, 2021
Programming
0
48
ウェブ最適化からはじめる機械学習 8章
「ウェブ最適化からはじめる機械学習」輪講会で発表した資料です。
Masafumi Abeta
August 18, 2021
Tweet
Share
More Decks by Masafumi Abeta
See All by Masafumi Abeta
Pythonのパッケージマネージャー「uv」
abeta
0
270
GPTモデルでキャラクター設定する際の課題
abeta
0
300
GPTをLINEで使えるようにして布教した
abeta
0
170
【Nishika】プリント基板の電子部品検出
abeta
0
310
初心者向けChatGPT入門
abeta
0
230
GPT Short Talk
abeta
0
130
拡散モデルについて少しだけ
abeta
0
60
動的計画モデル
abeta
0
160
物体追跡
abeta
0
290
Other Decks in Programming
See All in Programming
私の後悔をAWS DMSで解決した話
hiramax
4
190
AIレビュアーをスケールさせるには / Scaling AI Reviewers
technuma
2
240
Honoアップデート 2025年夏
yusukebe
1
900
MLH State of the League: 2026 Season
theycallmeswift
0
210
もうちょっといいRubyプロファイラを作りたい (2025)
osyoyu
0
240
ECS初心者の仲間 – TUIツール「e1s」の紹介
keidarcy
0
150
【第4回】関東Kaggler会「Kaggleは執筆に役立つ」
mipypf
0
1k
モバイルアプリからWebへの横展開を加速した話_Claude_Code_実践術.pdf
kazuyasakamoto
0
300
AIコーディングAgentとの向き合い方
eycjur
0
250
時間軸から考えるTerraformを使う理由と留意点
fufuhu
12
4k
The Past, Present, and Future of Enterprise Java
ivargrimstad
0
320
Oracle Database Technology Night 92 Database Connection control FAN-AC
oracle4engineer
PRO
1
380
Featured
See All Featured
CoffeeScript is Beautiful & I Never Want to Write Plain JavaScript Again
sstephenson
161
15k
Embracing the Ebb and Flow
colly
87
4.8k
What's in a price? How to price your products and services
michaelherold
246
12k
Why Our Code Smells
bkeepers
PRO
339
57k
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
333
22k
Music & Morning Musume
bryan
46
6.8k
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
9
800
YesSQL, Process and Tooling at Scale
rocio
173
14k
ピンチをチャンスに:未来をつくるプロダクトロードマップ #pmconf2020
aki_iinuma
126
53k
RailsConf 2023
tenderlove
30
1.2k
Build your cross-platform service in a week with App Engine
jlugia
231
18k
Automating Front-end Workflow
addyosmani
1370
200k
Transcript
XX University ウェブ最適化ではじめる機械学習 8章 2021.08 Abeta
2 8.1 短期的な評価と⻑期的な評価 8.1.1 リピートユーザを考慮した最適化 8.2 解空間のデザイン 8.3 ウェブサイト以外への応⽤
3 8.1 短期的な評価と⻑期的な評価 8.1.1 リピートユーザを考慮した最適化 8.2 解空間のデザイン 8.3 ウェブサイト以外への応⽤
4 8.1 短期的な評価と⻑期的な評価 8.1.1 リピートユーザを考慮した最適化 8.2 解空間のデザイン 8.3 ウェブサイト以外への応⽤
5 ユーザが⽇常的に使うツールで、ユーザの即時的な反応のみに着⽬すると、⻑期的な収益が下がる場合がある。 例)googleで広告表⽰を多くした→ユーザの使い勝⼿が悪くなり⻑期的には減収。 ⻑期的スパンで計測される指標も考慮する必要あり。 ⻑期的指標の評価には時間がかる。 ⼀つのアプローチとして、短期的な指標・特徴量から⻑期的指標を予測する機械学習モデルを作成することが ある。 𝜃 = 𝛼
+ 𝛽! 𝑥"#$%&%'()*% + 𝛽+ 𝑥,()#-)./(.%01()2-23
6 8.1 短期的な評価と⻑期的な評価 8.1.1 リピートユーザを考慮した最適化 8.2 解空間のデザイン 8.3 ウェブサイト以外への応⽤
7 バンディット問題ではユーザの状態は1つ、すなわち考慮されていなかった。ユーザの⾏動は新規やリピータ といった「状態」によって異なると考えられる。 ユーザの状態を扱う⼀つのアプローチとして強化学習がある。強化学習では最初から状態の遷移確率 𝒫(𝑠4 |𝑠45! )が含まれている。
8 8.1 短期的な評価と⻑期的な評価 8.1.1 リピートユーザを考慮した最適化 8.2 解空間のデザイン 8.3 ウェブサイト以外への応⽤
9 今回は解空間の検討を⼈間で⾏った(HLS空間、彩度100%)。これは⾊に対する知識を⽤いて暗黙にいくつ かの仮定を置いている。⼈間が思いつかないような選択肢を排除してしまっている。 ⼀⽅で、解空間の制約を無くすと解空間が膨⼤となって問題を解けない。 ⼀つのアプローチとして、解空間を⼩さい空間に圧縮してしまう⽅法がある。具体的には変分オートエンコー ダが使⽤できる。
10 8.1 短期的な評価と⻑期的な評価 8.1.1 リピートユーザを考慮した最適化 8.2 解空間のデザイン 8.3 ウェブサイト以外への応⽤
11 今回の⼿法の特徴 • ⼈間との相互作⽤をもとにソフトウェアの最適な状態を探す • ブラックボックス関数の最適化 適⽤のための条件 • 提供するサービスを即座に変更できること •
サービスに対するユーザの反応が常に計測できること IoTによってユーザの反応が即座に得られるようになると期待できる。反応に応じて提供するものを変更する ことで、提供物がサービス化していると考えられる。