Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
ウェブ最適化からはじめる機械学習 8章
Search
Masafumi Abeta
August 18, 2021
Programming
0
48
ウェブ最適化からはじめる機械学習 8章
「ウェブ最適化からはじめる機械学習」輪講会で発表した資料です。
Masafumi Abeta
August 18, 2021
Tweet
Share
More Decks by Masafumi Abeta
See All by Masafumi Abeta
Pythonのパッケージマネージャー「uv」
abeta
0
250
GPTモデルでキャラクター設定する際の課題
abeta
0
300
GPTをLINEで使えるようにして布教した
abeta
0
170
【Nishika】プリント基板の電子部品検出
abeta
0
300
初心者向けChatGPT入門
abeta
0
230
GPT Short Talk
abeta
0
120
拡散モデルについて少しだけ
abeta
0
58
動的計画モデル
abeta
0
160
物体追跡
abeta
0
290
Other Decks in Programming
See All in Programming
中級グラフィックス入門~効率的なメッシュレット描画~
projectasura
4
2.6k
Gemini CLIの"強み"を知る! Gemini CLIとClaude Codeを比較してみた!
kotahisafuru
3
970
管你要 trace 什麼、bpftrace 用下去就對了 — COSCUP 2025
shunghsiyu
0
390
MCPで実現できる、Webサービス利用体験について
syumai
7
2.5k
Nuances on Kubernetes - RubyConf Taiwan 2025
envek
0
150
GitHub Copilotの全体像と活用のヒント AI駆動開発の最初の一歩
74th
7
2.5k
Terraform やるなら公式スタイルガイドを読もう 〜重要項目 10選〜
hiyanger
13
3.1k
プロダクトという一杯を作る - プロダクトチームが味の責任を持つまでの煮込み奮闘記
hiliteeternal
0
450
대규모 트래픽을 처리하는 프론트 개발자의 전략
maryang
0
120
11年かかって やっとVibe Codingに 時代が追いつきましたね
yimajo
1
260
PHPカンファレンス関西2025 基調講演
sugimotokei
6
1.1k
コーディングは技術者(エンジニア)の嗜みでして / Learning the System Development Mindset from Rock Lady
mackey0225
2
420
Featured
See All Featured
Designing Dashboards & Data Visualisations in Web Apps
destraynor
231
53k
Git: the NoSQL Database
bkeepers
PRO
431
65k
Practical Orchestrator
shlominoach
190
11k
Easily Structure & Communicate Ideas using Wireframe
afnizarnur
194
16k
Code Reviewing Like a Champion
maltzj
524
40k
Principles of Awesome APIs and How to Build Them.
keavy
126
17k
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
PRO
183
54k
Why Our Code Smells
bkeepers
PRO
337
57k
Six Lessons from altMBA
skipperchong
28
3.9k
GraphQLの誤解/rethinking-graphql
sonatard
71
11k
The Illustrated Children's Guide to Kubernetes
chrisshort
48
50k
Raft: Consensus for Rubyists
vanstee
140
7.1k
Transcript
XX University ウェブ最適化ではじめる機械学習 8章 2021.08 Abeta
2 8.1 短期的な評価と⻑期的な評価 8.1.1 リピートユーザを考慮した最適化 8.2 解空間のデザイン 8.3 ウェブサイト以外への応⽤
3 8.1 短期的な評価と⻑期的な評価 8.1.1 リピートユーザを考慮した最適化 8.2 解空間のデザイン 8.3 ウェブサイト以外への応⽤
4 8.1 短期的な評価と⻑期的な評価 8.1.1 リピートユーザを考慮した最適化 8.2 解空間のデザイン 8.3 ウェブサイト以外への応⽤
5 ユーザが⽇常的に使うツールで、ユーザの即時的な反応のみに着⽬すると、⻑期的な収益が下がる場合がある。 例)googleで広告表⽰を多くした→ユーザの使い勝⼿が悪くなり⻑期的には減収。 ⻑期的スパンで計測される指標も考慮する必要あり。 ⻑期的指標の評価には時間がかる。 ⼀つのアプローチとして、短期的な指標・特徴量から⻑期的指標を予測する機械学習モデルを作成することが ある。 𝜃 = 𝛼
+ 𝛽! 𝑥"#$%&%'()*% + 𝛽+ 𝑥,()#-)./(.%01()2-23
6 8.1 短期的な評価と⻑期的な評価 8.1.1 リピートユーザを考慮した最適化 8.2 解空間のデザイン 8.3 ウェブサイト以外への応⽤
7 バンディット問題ではユーザの状態は1つ、すなわち考慮されていなかった。ユーザの⾏動は新規やリピータ といった「状態」によって異なると考えられる。 ユーザの状態を扱う⼀つのアプローチとして強化学習がある。強化学習では最初から状態の遷移確率 𝒫(𝑠4 |𝑠45! )が含まれている。
8 8.1 短期的な評価と⻑期的な評価 8.1.1 リピートユーザを考慮した最適化 8.2 解空間のデザイン 8.3 ウェブサイト以外への応⽤
9 今回は解空間の検討を⼈間で⾏った(HLS空間、彩度100%)。これは⾊に対する知識を⽤いて暗黙にいくつ かの仮定を置いている。⼈間が思いつかないような選択肢を排除してしまっている。 ⼀⽅で、解空間の制約を無くすと解空間が膨⼤となって問題を解けない。 ⼀つのアプローチとして、解空間を⼩さい空間に圧縮してしまう⽅法がある。具体的には変分オートエンコー ダが使⽤できる。
10 8.1 短期的な評価と⻑期的な評価 8.1.1 リピートユーザを考慮した最適化 8.2 解空間のデザイン 8.3 ウェブサイト以外への応⽤
11 今回の⼿法の特徴 • ⼈間との相互作⽤をもとにソフトウェアの最適な状態を探す • ブラックボックス関数の最適化 適⽤のための条件 • 提供するサービスを即座に変更できること •
サービスに対するユーザの反応が常に計測できること IoTによってユーザの反応が即座に得られるようになると期待できる。反応に応じて提供するものを変更する ことで、提供物がサービス化していると考えられる。