Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
ウェブ最適化からはじめる機械学習 8章
Search
Masafumi Abeta
August 18, 2021
Programming
0
48
ウェブ最適化からはじめる機械学習 8章
「ウェブ最適化からはじめる機械学習」輪講会で発表した資料です。
Masafumi Abeta
August 18, 2021
Tweet
Share
More Decks by Masafumi Abeta
See All by Masafumi Abeta
Pythonのパッケージマネージャー「uv」
abeta
0
220
GPTモデルでキャラクター設定する際の課題
abeta
0
280
GPTをLINEで使えるようにして布教した
abeta
0
160
【Nishika】プリント基板の電子部品検出
abeta
0
300
初心者向けChatGPT入門
abeta
0
220
GPT Short Talk
abeta
0
120
拡散モデルについて少しだけ
abeta
0
54
動的計画モデル
abeta
0
150
物体追跡
abeta
0
280
Other Decks in Programming
See All in Programming
プロダクト志向ってなんなんだろうね
righttouch
PRO
0
180
エラーって何種類あるの?
kajitack
5
340
ふつうの技術スタックでアート作品を作ってみる
akira888
0
320
Azure AI Foundryではじめてのマルチエージェントワークフロー
seosoft
0
150
なぜ「共通化」を考え、失敗を繰り返すのか
rinchoku
1
620
PHP 8.4の新機能「プロパティフック」から学ぶオブジェクト指向設計とリスコフの置換原則
kentaroutakeda
2
710
#kanrk08 / 公開版 PicoRubyとマイコンでの自作トレーニング計測装置を用いたワークアウトの理想と現実
bash0c7
1
670
ソフトウェア品質を数字で捉える技術。事業成長を支えるシステム品質の マネジメント
takuya542
0
730
PostgreSQLのRow Level SecurityをPHPのORMで扱う Eloquent vs Doctrine #phpcon #track2
77web
2
460
Team topologies and the microservice architecture: a synergistic relationship
cer
PRO
0
1.2k
Is Xcode slowly dying out in 2025?
uetyo
1
240
LT 2025-06-30: プロダクトエンジニアの役割
yamamotok
0
670
Featured
See All Featured
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
35
2.4k
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
281
13k
Faster Mobile Websites
deanohume
307
31k
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
252
21k
The Psychology of Web Performance [Beyond Tellerrand 2023]
tammyeverts
48
2.9k
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
10
940
Making Projects Easy
brettharned
116
6.3k
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
PRO
20
1.3k
What’s in a name? Adding method to the madness
productmarketing
PRO
23
3.5k
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
8
800
Become a Pro
speakerdeck
PRO
28
5.4k
Why Our Code Smells
bkeepers
PRO
337
57k
Transcript
XX University ウェブ最適化ではじめる機械学習 8章 2021.08 Abeta
2 8.1 短期的な評価と⻑期的な評価 8.1.1 リピートユーザを考慮した最適化 8.2 解空間のデザイン 8.3 ウェブサイト以外への応⽤
3 8.1 短期的な評価と⻑期的な評価 8.1.1 リピートユーザを考慮した最適化 8.2 解空間のデザイン 8.3 ウェブサイト以外への応⽤
4 8.1 短期的な評価と⻑期的な評価 8.1.1 リピートユーザを考慮した最適化 8.2 解空間のデザイン 8.3 ウェブサイト以外への応⽤
5 ユーザが⽇常的に使うツールで、ユーザの即時的な反応のみに着⽬すると、⻑期的な収益が下がる場合がある。 例)googleで広告表⽰を多くした→ユーザの使い勝⼿が悪くなり⻑期的には減収。 ⻑期的スパンで計測される指標も考慮する必要あり。 ⻑期的指標の評価には時間がかる。 ⼀つのアプローチとして、短期的な指標・特徴量から⻑期的指標を予測する機械学習モデルを作成することが ある。 𝜃 = 𝛼
+ 𝛽! 𝑥"#$%&%'()*% + 𝛽+ 𝑥,()#-)./(.%01()2-23
6 8.1 短期的な評価と⻑期的な評価 8.1.1 リピートユーザを考慮した最適化 8.2 解空間のデザイン 8.3 ウェブサイト以外への応⽤
7 バンディット問題ではユーザの状態は1つ、すなわち考慮されていなかった。ユーザの⾏動は新規やリピータ といった「状態」によって異なると考えられる。 ユーザの状態を扱う⼀つのアプローチとして強化学習がある。強化学習では最初から状態の遷移確率 𝒫(𝑠4 |𝑠45! )が含まれている。
8 8.1 短期的な評価と⻑期的な評価 8.1.1 リピートユーザを考慮した最適化 8.2 解空間のデザイン 8.3 ウェブサイト以外への応⽤
9 今回は解空間の検討を⼈間で⾏った(HLS空間、彩度100%)。これは⾊に対する知識を⽤いて暗黙にいくつ かの仮定を置いている。⼈間が思いつかないような選択肢を排除してしまっている。 ⼀⽅で、解空間の制約を無くすと解空間が膨⼤となって問題を解けない。 ⼀つのアプローチとして、解空間を⼩さい空間に圧縮してしまう⽅法がある。具体的には変分オートエンコー ダが使⽤できる。
10 8.1 短期的な評価と⻑期的な評価 8.1.1 リピートユーザを考慮した最適化 8.2 解空間のデザイン 8.3 ウェブサイト以外への応⽤
11 今回の⼿法の特徴 • ⼈間との相互作⽤をもとにソフトウェアの最適な状態を探す • ブラックボックス関数の最適化 適⽤のための条件 • 提供するサービスを即座に変更できること •
サービスに対するユーザの反応が常に計測できること IoTによってユーザの反応が即座に得られるようになると期待できる。反応に応じて提供するものを変更する ことで、提供物がサービス化していると考えられる。