Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Bottleneck Analysis - GOTO 2012
Search
Adrian Cockcroft
October 03, 2024
Technology
0
4
Bottleneck Analysis - GOTO 2012
Adrian Cockcroft
October 03, 2024
Tweet
Share
More Decks by Adrian Cockcroft
See All by Adrian Cockcroft
SC03 Sun Microsystems Keynote
adrianco
0
160
HPC Interconnect Technologies in 2004
adrianco
0
64
Microservices Workshop All Topics Deck 2016
adrianco
0
34k
Cloud Native
adrianco
1
450
Patterns for Continuous Delivery, Reactive, High Availability, DevOps & Cloud Native Open Source with NetflixOSS
adrianco
13
3.7k
Other Decks in Technology
See All in Technology
日経電子版のStoreKit2フルリニューアル
shimastripe
1
140
【Pycon mini 東海 2024】Google Colaboratoryで試すVLM
kazuhitotakahashi
2
540
OCI Vault 概要
oracle4engineer
PRO
0
9.7k
Shopifyアプリ開発における Shopifyの機能活用
sonatard
4
250
Application Development WG Intro at AppDeveloperCon
salaboy
0
190
Flutterによる 効率的なAndroid・iOS・Webアプリケーション開発の事例
recruitengineers
PRO
0
120
OCI Security サービス 概要
oracle4engineer
PRO
0
6.5k
The Rise of LLMOps
asei
7
1.7k
テストコード品質を高めるためにMutation Testingライブラリ・Strykerを実戦導入してみた話
ysknsid25
7
2.7k
Evangelismo técnico: ¿qué, cómo y por qué?
trishagee
0
360
いざ、BSC討伐の旅
nikinusu
2
780
強いチームと開発生産性
onk
PRO
35
11k
Featured
See All Featured
The Cost Of JavaScript in 2023
addyosmani
45
6.8k
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
47
5k
Making the Leap to Tech Lead
cromwellryan
133
8.9k
Rails Girls Zürich Keynote
gr2m
94
13k
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
44
6.8k
Docker and Python
trallard
40
3.1k
Designing for Performance
lara
604
68k
Mobile First: as difficult as doing things right
swwweet
222
8.9k
Testing 201, or: Great Expectations
jmmastey
38
7.1k
What's in a price? How to price your products and services
michaelherold
243
12k
Building an army of robots
kneath
302
43k
Producing Creativity
orderedlist
PRO
341
39k
Transcript
None
None
None
Bottle delivery data Interval Response Time Throughput 10 3.1 22
20 1.2 41 30 7.9 32 … … …
Grab some data (using R) beer <- read.csv(url("http://staash.com/beer_operation s.csv")) response
<- beer[,2] plot(response, type="S",ylab=”response”)
Bottle delivery response over time
Analysis > summary(response) Min. 1st Qu. Median Mean 3rd Qu.
Max. 1.909 2.550 2.820 3.086 3.214 67.680 > quantile(response,c(0.95,0.99)) 95% 99% 4.149556 6.922115 > sd(response) 1.941328 > mean(response) + 2 * sd(response) 6.968416
chp(throughput,response,q=1.0) (See http://perfcap.blogspot.com/search?q=chp)
None
None
None
None
None
None
None
None
None
Scalability plots generated using appdynamics.com
Well behaved Lock Contention Oscillating, thread shortage Looping autoscaled Bottlenecks
http://perfcap.blogspot.com/search?q=chp @adrianco