Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Bottleneck Analysis - GOTO 2012
Search
Adrian Cockcroft
October 03, 2024
Technology
0
27
Bottleneck Analysis - GOTO 2012
Adrian Cockcroft
October 03, 2024
Tweet
Share
More Decks by Adrian Cockcroft
See All by Adrian Cockcroft
SC03 Sun Microsystems Keynote
adrianco
0
200
HPC Interconnect Technologies in 2004
adrianco
0
79
Microservices Workshop All Topics Deck 2016
adrianco
0
34k
Cloud Native
adrianco
1
450
Patterns for Continuous Delivery, Reactive, High Availability, DevOps & Cloud Native Open Source with NetflixOSS
adrianco
13
3.9k
Other Decks in Technology
See All in Technology
「何となくテストする」を卒業するためにプロダクトが動く仕組みを理解しよう
kawabeaver
0
280
サンドボックス技術でAI利活用を促進する
koh_naga
0
200
今!ソフトウェアエンジニアがハードウェアに手を出すには
mackee
11
4.5k
Aurora DSQLはサーバーレスアーキテクチャの常識を変えるのか
iwatatomoya
0
190
落ちる 落ちるよ サーバーは落ちる
suehiromasatoshi
0
150
COVESA VSSによる車両データモデルの標準化とAWS IoT FleetWiseの活用
osawa
1
250
なぜテストマネージャの視点が 必要なのか? 〜 一歩先へ進むために 〜
moritamasami
0
210
Automating Web Accessibility Testing with AI Agents
maminami373
0
1.2k
なぜSaaSがMCPサーバーをサービス提供するのか?
sansantech
PRO
8
2.7k
サラリーマンの小遣いで作るtoCサービス - Cloudflare Workersでスケールする開発戦略
shinaps
1
380
LLMを搭載したプロダクトの品質保証の模索と学び
qa
0
1k
20250903_1つのAWSアカウントに複数システムがある環境におけるアクセス制御をABACで実現.pdf
yhana
3
530
Featured
See All Featured
Dealing with People You Can't Stand - Big Design 2015
cassininazir
367
27k
Scaling GitHub
holman
463
140k
Documentation Writing (for coders)
carmenintech
74
5k
Designing for Performance
lara
610
69k
Music & Morning Musume
bryan
46
6.8k
The World Runs on Bad Software
bkeepers
PRO
70
11k
Agile that works and the tools we love
rasmusluckow
330
21k
Statistics for Hackers
jakevdp
799
220k
The Cost Of JavaScript in 2023
addyosmani
53
8.9k
Why You Should Never Use an ORM
jnunemaker
PRO
59
9.5k
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
51
5.6k
Product Roadmaps are Hard
iamctodd
PRO
54
11k
Transcript
None
None
None
Bottle delivery data Interval Response Time Throughput 10 3.1 22
20 1.2 41 30 7.9 32 … … …
Grab some data (using R) beer <- read.csv(url("http://staash.com/beer_operation s.csv")) response
<- beer[,2] plot(response, type="S",ylab=”response”)
Bottle delivery response over time
Analysis > summary(response) Min. 1st Qu. Median Mean 3rd Qu.
Max. 1.909 2.550 2.820 3.086 3.214 67.680 > quantile(response,c(0.95,0.99)) 95% 99% 4.149556 6.922115 > sd(response) 1.941328 > mean(response) + 2 * sd(response) 6.968416
chp(throughput,response,q=1.0) (See http://perfcap.blogspot.com/search?q=chp)
None
None
None
None
None
None
None
None
None
Scalability plots generated using appdynamics.com
Well behaved Lock Contention Oscillating, thread shortage Looping autoscaled Bottlenecks
http://perfcap.blogspot.com/search?q=chp @adrianco