Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Vertex AIで実現するLLMデータアノテーションの効率化と自動化
Search
Sponsored
·
Ship Features Fearlessly
Turn features on and off without deploys. Used by thousands of Ruby developers.
→
為藤アキラ
February 06, 2025
Technology
0
180
Vertex AIで実現するLLMデータアノテーションの効率化と自動化
為藤アキラ
February 06, 2025
Tweet
Share
More Decks by 為藤アキラ
See All by 為藤アキラ
AI Agent Vertex AI Agent Builder × A2A × ADKで繋げるマルチエージェント
akiratameto
1
110
[OpsJAWS Meetup33 AIOps] Amazon Bedrockガードレールで守る安全なAI運用
akiratameto
2
330
Amazon Bedrockで実現する堅牢なデータエンジニアリング
akiratameto
1
97
Bedrock カスタムモデルvs汎用モデルの比較
akiratameto
1
140
Amazon Bedrock Agents (ナレッジベースの種類)
akiratameto
1
270
DeepSeek-R1をカスタムモデルとしてAmazon Bedrockにインポートし活用
akiratameto
0
240
Amazon Bedrock Agents (基本編)
akiratameto
0
210
SageMaker Feature Storeを活かしたLLM推論
akiratameto
1
87
Other Decks in Technology
See All in Technology
pool.ntp.orgに ⾃宅サーバーで 参加してみたら...
tanyorg
0
1.4k
Red Hat OpenStack Services on OpenShift
tamemiya
0
140
usermode linux without MMU - fosdem2026 kernel devroom
thehajime
0
240
OpenShiftでllm-dを動かそう!
jpishikawa
0
140
登壇駆動学習のすすめ — CfPのネタの見つけ方と書くときに意識していること
bicstone
3
130
ブロックテーマ、WordPress でウェブサイトをつくるということ / 2026.02.07 Gifu WordPress Meetup
torounit
0
210
Oracle Base Database Service 技術詳細
oracle4engineer
PRO
15
93k
Bedrock PolicyでAmazon Bedrock Guardrails利用を強制してみた
yuu551
0
260
GitHub Copilot CLI を使いやすくしよう
tsubakimoto_s
0
110
SchooでVue.js/Nuxtを技術選定している理由
yamanoku
3
210
Exadata Fleet Update
oracle4engineer
PRO
0
1.1k
Context Engineeringの取り組み
nutslove
0
380
Featured
See All Featured
Embracing the Ebb and Flow
colly
88
5k
Crafting Experiences
bethany
1
55
What’s in a name? Adding method to the madness
productmarketing
PRO
24
3.9k
The Myth of the Modular Monolith - Day 2 Keynote - Rails World 2024
eileencodes
26
3.3k
Leo the Paperboy
mayatellez
4
1.4k
Optimising Largest Contentful Paint
csswizardry
37
3.6k
How to Build an AI Search Optimization Roadmap - Criteria and Steps to Take #SEOIRL
aleyda
1
1.9k
[RailsConf 2023] Rails as a piece of cake
palkan
59
6.3k
Building a A Zero-Code AI SEO Workflow
portentint
PRO
0
320
How GitHub (no longer) Works
holman
316
140k
Optimizing for Happiness
mojombo
379
71k
Claude Code どこまでも/ Claude Code Everywhere
nwiizo
61
52k
Transcript
Google Cloud活用 AI/ML/LLM #1 機械学習 (ML) / 大規模言語モデル(LLM) の為のデータ準備 Vertex
AIで実現するLLMデータ アノテーションの効率化と自動化 株式会社BLUEISH 代表取締役CEO兼CTO 為藤アキラ @AkiraTameto
為藤 アキラ (Akira Tameto) 株式会社BLUEISH 代表取締役 CEO兼CTO ・直近のAIプロジェクト ・画像を中心とした機械学習とLLM
のハイブリッドのアーキテクト 自己紹介
今回のお話
よくある課題 ・LLMには大量の高品質データが必要 ・手動アノテーション=時間がかかる / コストが高い / 品質 ばらつき ・「データ増やしたいけど、全然追いつかない…」
Vertex AI Data Labelingの概要 t テキスト・画像・動画などのラベル付けをクラウドで一元管7 t 手動ラベリング+自動ラベリングの両方が可能 更にAutoMLモデル活用で効率UP! Vertex
AIのラベリング機能とは?
自動アノテーションの活用方法 E4 少量のデータでAutoMLモデル作S 54 大量データに一括ラベル付A 24 人間が確認・修正 → 精度UP 自動アノテーションは大きく3ステップ
具体的なワークフロー 4% データの準備 (Cloud Storage / BigQuery など) a` ラベリングプロジェクト作成
(Vertex AIコンソール) y` 少量データのラベル付け ` AutoMLモデルの学習 k` 自動アノテーションの適用 u` 人間の確認・修正
具体的なワークフロー 74 データの準備 (Cloud Storage / BigQuery など) HY ラベリングプロジェクト作成
(Vertex AIコンソール) y4 少量データのラベル付け 4 AutoMLモデルの学習 k4 自動アノテーションの適用 u4 人間の確認・修正
具体的なワークフロー 74 データの準備 (Cloud Storage / BigQuery など) a4 ラベリングプロジェクト作成
(Vertex AIコンソール) xy 少量データのラベル付け 4 AutoMLモデルの学習 k4 自動アノテーションの適用 u4 人間の確認・修正
具体的なワークフロー 74 データの準備 (Cloud Storage / BigQuery など) a4 ラベリングプロジェクト作成
(Vertex AIコンソール) y4 少量データのラベル付け AutoMLモデルの学習 k4 自動アノテーションの適用 u4 人間の確認・修正
具体的なワークフロー 74 データの準備 (Cloud Storage / BigQuery など) a4 ラベリングプロジェクト作成
(Vertex AIコンソール) y4 少量データのラベル付け 4 AutoMLモデルの学習 d 自動アノテーションの適用 u4 人間の確認・修正
具体的なワークフロー 74 データの準備 (Cloud Storage / BigQuery など) a4 ラベリングプロジェクト作成
(Vertex AIコンソール) y4 少量データのラベル付け 4 AutoMLモデルの学習 k4 自動アノテーションの適用 uo 人間の確認・修正
メリットと課題 8 作業時間・コスト削% 8 精度と一貫性の向 8 データ増加へのスケーラビリティ メリット 8 モデル精度への依b
8 100%自動化は難しく、Human in the Loopが必y 8 初期コストの先行投資 課題
まとめ 1 W 「Vertex AI+AutoML」でラベリングを効率" W LLM開発のデータ準備をスピードアッ W People(人間) +
AI でハイブリッド運用 まとめ
Thank You!