Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Vertex AIで実現するLLMデータアノテーションの効率化と自動化
Search
為藤アキラ
February 06, 2025
Technology
0
40
Vertex AIで実現するLLMデータアノテーションの効率化と自動化
為藤アキラ
February 06, 2025
Tweet
Share
More Decks by 為藤アキラ
See All by 為藤アキラ
Bedrock カスタムモデルvs汎用モデルの比較
akiratameto
1
67
Amazon Bedrock Agents (ナレッジベースの種類)
akiratameto
1
94
DeepSeek-R1をカスタムモデルとしてAmazon Bedrockにインポートし活用
akiratameto
0
120
Amazon Bedrock Agents (基本編)
akiratameto
0
62
SageMaker Feature Storeを活かしたLLM推論
akiratameto
0
30
Other Decks in Technology
See All in Technology
Goで作って学ぶWebSocket
ryuichi1208
0
630
ホワイトボードチャレンジ 説明&実行資料
ichimichi
0
130
2025-02-21 ゆるSRE勉強会 Enhancing SRE Using AI
yoshiiryo1
1
340
30分でわかる『アジャイルデータモデリング』
hanon52_
9
2.7k
ハッキングの世界に迫る~攻撃者の思考で考えるセキュリティ~
nomizone
13
5.2k
明日からできる!技術的負債の返済を加速するための実践ガイド~『ホットペッパービューティー』の事例をもとに~
recruitengineers
PRO
3
400
【Developers Summit 2025】プロダクトエンジニアから学ぶ、 ユーザーにより高い価値を届ける技術
niwatakeru
2
1.4k
個人開発から公式機能へ: PlaywrightとRailsをつなげた3年の軌跡
yusukeiwaki
11
3k
表現を育てる
kiyou77
1
210
現場の種を事業の芽にする - エンジニア主導のイノベーションを事業戦略に装着する方法 -
kzkmaeda
2
2.1k
関東Kaggler会LT: 人狼コンペとLLM量子化について
nejumi
3
580
管理者しか知らないOutlookの裏側のAIを覗く#AzureTravelers
hirotomotaguchi
2
400
Featured
See All Featured
How to Think Like a Performance Engineer
csswizardry
22
1.3k
It's Worth the Effort
3n
184
28k
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
226
22k
Templates, Plugins, & Blocks: Oh My! Creating the theme that thinks of everything
marktimemedia
30
2.2k
A better future with KSS
kneath
238
17k
Reflections from 52 weeks, 52 projects
jeffersonlam
348
20k
The Power of CSS Pseudo Elements
geoffreycrofte
75
5.5k
The Art of Programming - Codeland 2020
erikaheidi
53
13k
Building an army of robots
kneath
303
45k
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
PRO
12
960
Put a Button on it: Removing Barriers to Going Fast.
kastner
60
3.7k
How To Stay Up To Date on Web Technology
chriscoyier
790
250k
Transcript
Google Cloud活用 AI/ML/LLM #1 機械学習 (ML) / 大規模言語モデル(LLM) の為のデータ準備 Vertex
AIで実現するLLMデータ アノテーションの効率化と自動化 株式会社BLUEISH 代表取締役CEO兼CTO 為藤アキラ @AkiraTameto
為藤 アキラ (Akira Tameto) 株式会社BLUEISH 代表取締役 CEO兼CTO ・直近のAIプロジェクト ・画像を中心とした機械学習とLLM
のハイブリッドのアーキテクト 自己紹介
今回のお話
よくある課題 ・LLMには大量の高品質データが必要 ・手動アノテーション=時間がかかる / コストが高い / 品質 ばらつき ・「データ増やしたいけど、全然追いつかない…」
Vertex AI Data Labelingの概要 t テキスト・画像・動画などのラベル付けをクラウドで一元管7 t 手動ラベリング+自動ラベリングの両方が可能 更にAutoMLモデル活用で効率UP! Vertex
AIのラベリング機能とは?
自動アノテーションの活用方法 E4 少量のデータでAutoMLモデル作S 54 大量データに一括ラベル付A 24 人間が確認・修正 → 精度UP 自動アノテーションは大きく3ステップ
具体的なワークフロー 4% データの準備 (Cloud Storage / BigQuery など) a` ラベリングプロジェクト作成
(Vertex AIコンソール) y` 少量データのラベル付け ` AutoMLモデルの学習 k` 自動アノテーションの適用 u` 人間の確認・修正
具体的なワークフロー 74 データの準備 (Cloud Storage / BigQuery など) HY ラベリングプロジェクト作成
(Vertex AIコンソール) y4 少量データのラベル付け 4 AutoMLモデルの学習 k4 自動アノテーションの適用 u4 人間の確認・修正
具体的なワークフロー 74 データの準備 (Cloud Storage / BigQuery など) a4 ラベリングプロジェクト作成
(Vertex AIコンソール) xy 少量データのラベル付け 4 AutoMLモデルの学習 k4 自動アノテーションの適用 u4 人間の確認・修正
具体的なワークフロー 74 データの準備 (Cloud Storage / BigQuery など) a4 ラベリングプロジェクト作成
(Vertex AIコンソール) y4 少量データのラベル付け AutoMLモデルの学習 k4 自動アノテーションの適用 u4 人間の確認・修正
具体的なワークフロー 74 データの準備 (Cloud Storage / BigQuery など) a4 ラベリングプロジェクト作成
(Vertex AIコンソール) y4 少量データのラベル付け 4 AutoMLモデルの学習 d 自動アノテーションの適用 u4 人間の確認・修正
具体的なワークフロー 74 データの準備 (Cloud Storage / BigQuery など) a4 ラベリングプロジェクト作成
(Vertex AIコンソール) y4 少量データのラベル付け 4 AutoMLモデルの学習 k4 自動アノテーションの適用 uo 人間の確認・修正
メリットと課題 8 作業時間・コスト削% 8 精度と一貫性の向 8 データ増加へのスケーラビリティ メリット 8 モデル精度への依b
8 100%自動化は難しく、Human in the Loopが必y 8 初期コストの先行投資 課題
まとめ 1 W 「Vertex AI+AutoML」でラベリングを効率" W LLM開発のデータ準備をスピードアッ W People(人間) +
AI でハイブリッド運用 まとめ
Thank You!