Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Vertex AIで実現するLLMデータアノテーションの効率化と自動化
Search
為藤アキラ
February 06, 2025
Technology
0
170
Vertex AIで実現するLLMデータアノテーションの効率化と自動化
為藤アキラ
February 06, 2025
Tweet
Share
More Decks by 為藤アキラ
See All by 為藤アキラ
AI Agent Vertex AI Agent Builder × A2A × ADKで繋げるマルチエージェント
akiratameto
1
110
[OpsJAWS Meetup33 AIOps] Amazon Bedrockガードレールで守る安全なAI運用
akiratameto
2
320
Amazon Bedrockで実現する堅牢なデータエンジニアリング
akiratameto
1
97
Bedrock カスタムモデルvs汎用モデルの比較
akiratameto
1
130
Amazon Bedrock Agents (ナレッジベースの種類)
akiratameto
1
250
DeepSeek-R1をカスタムモデルとしてAmazon Bedrockにインポートし活用
akiratameto
0
230
Amazon Bedrock Agents (基本編)
akiratameto
0
210
SageMaker Feature Storeを活かしたLLM推論
akiratameto
1
85
Other Decks in Technology
See All in Technology
モノタロウ x クリエーションラインで実現する チームトポロジーにおける プラットフォームチーム・ ストリームアラインドチームの 効果的なコラボレーション
creationline
0
600
「リリースファースト」の実感を届けるには 〜停滞するチームに変化を起こすアプローチ〜 #RSGT2026
kintotechdev
0
730
マーケットプレイス版Oracle WebCenter Content For OCI
oracle4engineer
PRO
5
1.5k
「駆動」って言葉、なんかカッコイイ_Mitz
comucal
PRO
0
140
Claude Codeを使った情報整理術
knishioka
20
12k
自己管理型チームと個人のセルフマネジメント 〜モチベーション編〜
kakehashi
PRO
5
2.3k
Bill One 開発エンジニア 紹介資料
sansan33
PRO
4
17k
2025年の医用画像AI/AI×medical_imaging_in_2025_generated_by_AI
tdys13
0
320
プロンプトエンジニアリングを超えて:自由と統制のあいだでつくる Platform × Context Engineering
yuriemori
0
320
歴史から学ぶ、Goのメモリ管理基礎
logica0419
12
2.5k
BidiAgent と Nova 2 Sonic から考える音声 AI について
yama3133
2
150
スクラムマスターが スクラムチームに入って取り組む5つのこと - スクラムガイドには書いてないけど入った当初から取り組んでおきたい大切なこと -
scrummasudar
1
1.8k
Featured
See All Featured
Marketing to machines
jonoalderson
1
4.5k
Google's AI Overviews - The New Search
badams
0
890
Building Applications with DynamoDB
mza
96
6.9k
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
21
1.3k
Mobile First: as difficult as doing things right
swwweet
225
10k
SEOcharity - Dark patterns in SEO and UX: How to avoid them and build a more ethical web
sarafernandez
0
100
Connecting the Dots Between Site Speed, User Experience & Your Business [WebExpo 2025]
tammyeverts
10
780
How People are Using Generative and Agentic AI to Supercharge Their Products, Projects, Services and Value Streams Today
helenjbeal
1
95
Max Prin - Stacking Signals: How International SEO Comes Together (And Falls Apart)
techseoconnect
PRO
0
61
Odyssey Design
rkendrick25
PRO
0
460
The SEO identity crisis: Don't let AI make you average
varn
0
47
Visual Storytelling: How to be a Superhuman Communicator
reverentgeek
2
410
Transcript
Google Cloud活用 AI/ML/LLM #1 機械学習 (ML) / 大規模言語モデル(LLM) の為のデータ準備 Vertex
AIで実現するLLMデータ アノテーションの効率化と自動化 株式会社BLUEISH 代表取締役CEO兼CTO 為藤アキラ @AkiraTameto
為藤 アキラ (Akira Tameto) 株式会社BLUEISH 代表取締役 CEO兼CTO ・直近のAIプロジェクト ・画像を中心とした機械学習とLLM
のハイブリッドのアーキテクト 自己紹介
今回のお話
よくある課題 ・LLMには大量の高品質データが必要 ・手動アノテーション=時間がかかる / コストが高い / 品質 ばらつき ・「データ増やしたいけど、全然追いつかない…」
Vertex AI Data Labelingの概要 t テキスト・画像・動画などのラベル付けをクラウドで一元管7 t 手動ラベリング+自動ラベリングの両方が可能 更にAutoMLモデル活用で効率UP! Vertex
AIのラベリング機能とは?
自動アノテーションの活用方法 E4 少量のデータでAutoMLモデル作S 54 大量データに一括ラベル付A 24 人間が確認・修正 → 精度UP 自動アノテーションは大きく3ステップ
具体的なワークフロー 4% データの準備 (Cloud Storage / BigQuery など) a` ラベリングプロジェクト作成
(Vertex AIコンソール) y` 少量データのラベル付け ` AutoMLモデルの学習 k` 自動アノテーションの適用 u` 人間の確認・修正
具体的なワークフロー 74 データの準備 (Cloud Storage / BigQuery など) HY ラベリングプロジェクト作成
(Vertex AIコンソール) y4 少量データのラベル付け 4 AutoMLモデルの学習 k4 自動アノテーションの適用 u4 人間の確認・修正
具体的なワークフロー 74 データの準備 (Cloud Storage / BigQuery など) a4 ラベリングプロジェクト作成
(Vertex AIコンソール) xy 少量データのラベル付け 4 AutoMLモデルの学習 k4 自動アノテーションの適用 u4 人間の確認・修正
具体的なワークフロー 74 データの準備 (Cloud Storage / BigQuery など) a4 ラベリングプロジェクト作成
(Vertex AIコンソール) y4 少量データのラベル付け AutoMLモデルの学習 k4 自動アノテーションの適用 u4 人間の確認・修正
具体的なワークフロー 74 データの準備 (Cloud Storage / BigQuery など) a4 ラベリングプロジェクト作成
(Vertex AIコンソール) y4 少量データのラベル付け 4 AutoMLモデルの学習 d 自動アノテーションの適用 u4 人間の確認・修正
具体的なワークフロー 74 データの準備 (Cloud Storage / BigQuery など) a4 ラベリングプロジェクト作成
(Vertex AIコンソール) y4 少量データのラベル付け 4 AutoMLモデルの学習 k4 自動アノテーションの適用 uo 人間の確認・修正
メリットと課題 8 作業時間・コスト削% 8 精度と一貫性の向 8 データ増加へのスケーラビリティ メリット 8 モデル精度への依b
8 100%自動化は難しく、Human in the Loopが必y 8 初期コストの先行投資 課題
まとめ 1 W 「Vertex AI+AutoML」でラベリングを効率" W LLM開発のデータ準備をスピードアッ W People(人間) +
AI でハイブリッド運用 まとめ
Thank You!