Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Vertex AIで実現するLLMデータアノテーションの効率化と自動化
Search
為藤アキラ
February 06, 2025
Technology
0
130
Vertex AIで実現するLLMデータアノテーションの効率化と自動化
為藤アキラ
February 06, 2025
Tweet
Share
More Decks by 為藤アキラ
See All by 為藤アキラ
AI Agent Vertex AI Agent Builder × A2A × ADKで繋げるマルチエージェント
akiratameto
1
93
[OpsJAWS Meetup33 AIOps] Amazon Bedrockガードレールで守る安全なAI運用
akiratameto
2
280
Amazon Bedrockで実現する堅牢なデータエンジニアリング
akiratameto
1
77
Bedrock カスタムモデルvs汎用モデルの比較
akiratameto
1
130
Amazon Bedrock Agents (ナレッジベースの種類)
akiratameto
1
210
DeepSeek-R1をカスタムモデルとしてAmazon Bedrockにインポートし活用
akiratameto
0
220
Amazon Bedrock Agents (基本編)
akiratameto
0
190
SageMaker Feature Storeを活かしたLLM推論
akiratameto
1
70
Other Decks in Technology
See All in Technology
映像エッジAIにおけるNode-RED活用事例
emirmatsui
0
110
「魔法少女まどか☆マギカ Magia Exedra」のIPのキャラクターを描くための3Dルック開発
gree_tech
PRO
0
130
Introduction to Sansan Meishi Maker Development Engineer
sansan33
PRO
0
310
「REALITY」3Dアバターシステムの7年分の拡張の歴史について
gree_tech
PRO
0
110
20251007: What happens when multi-agent systems become larger? (CyberAgent, Inc)
ornew
1
510
Bill One 開発エンジニア 紹介資料
sansan33
PRO
4
14k
プロダクトのコードから見るGoによるデザインパターンの実践 #go_night_talk
bengo4com
1
2.7k
ハノーファーメッセ2025で見た生成AI活用ユースケース.pdf
hamadakoji
0
280
もう外には出ない。より快適なフルリモート環境を目指して
mottyzzz
7
3.8k
Implementing and Evaluating a High-Level Language with WasmGC and the Wasm Component Model: Scala’s Case
tanishiking
0
150
LLMプロダクトの信頼性を上げるには?LLM Observabilityによる、対話型音声AIアプリケーションの安定運用
ivry_presentationmaterials
0
740
CNCFの視点で捉えるPlatform Engineering - 最新動向と展望 / Platform Engineering from the CNCF Perspective
hhiroshell
0
120
Featured
See All Featured
Bootstrapping a Software Product
garrettdimon
PRO
307
110k
A Modern Web Designer's Workflow
chriscoyier
697
190k
How To Stay Up To Date on Web Technology
chriscoyier
791
250k
The Art of Delivering Value - GDevCon NA Keynote
reverentgeek
16
1.7k
Code Review Best Practice
trishagee
72
19k
Six Lessons from altMBA
skipperchong
29
4k
No one is an island. Learnings from fostering a developers community.
thoeni
21
3.5k
Building Applications with DynamoDB
mza
96
6.7k
GraphQLの誤解/rethinking-graphql
sonatard
73
11k
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
PRO
23
1.5k
How to Create Impact in a Changing Tech Landscape [PerfNow 2023]
tammyeverts
55
3k
Building Better People: How to give real-time feedback that sticks.
wjessup
369
20k
Transcript
Google Cloud活用 AI/ML/LLM #1 機械学習 (ML) / 大規模言語モデル(LLM) の為のデータ準備 Vertex
AIで実現するLLMデータ アノテーションの効率化と自動化 株式会社BLUEISH 代表取締役CEO兼CTO 為藤アキラ @AkiraTameto
為藤 アキラ (Akira Tameto) 株式会社BLUEISH 代表取締役 CEO兼CTO ・直近のAIプロジェクト ・画像を中心とした機械学習とLLM
のハイブリッドのアーキテクト 自己紹介
今回のお話
よくある課題 ・LLMには大量の高品質データが必要 ・手動アノテーション=時間がかかる / コストが高い / 品質 ばらつき ・「データ増やしたいけど、全然追いつかない…」
Vertex AI Data Labelingの概要 t テキスト・画像・動画などのラベル付けをクラウドで一元管7 t 手動ラベリング+自動ラベリングの両方が可能 更にAutoMLモデル活用で効率UP! Vertex
AIのラベリング機能とは?
自動アノテーションの活用方法 E4 少量のデータでAutoMLモデル作S 54 大量データに一括ラベル付A 24 人間が確認・修正 → 精度UP 自動アノテーションは大きく3ステップ
具体的なワークフロー 4% データの準備 (Cloud Storage / BigQuery など) a` ラベリングプロジェクト作成
(Vertex AIコンソール) y` 少量データのラベル付け ` AutoMLモデルの学習 k` 自動アノテーションの適用 u` 人間の確認・修正
具体的なワークフロー 74 データの準備 (Cloud Storage / BigQuery など) HY ラベリングプロジェクト作成
(Vertex AIコンソール) y4 少量データのラベル付け 4 AutoMLモデルの学習 k4 自動アノテーションの適用 u4 人間の確認・修正
具体的なワークフロー 74 データの準備 (Cloud Storage / BigQuery など) a4 ラベリングプロジェクト作成
(Vertex AIコンソール) xy 少量データのラベル付け 4 AutoMLモデルの学習 k4 自動アノテーションの適用 u4 人間の確認・修正
具体的なワークフロー 74 データの準備 (Cloud Storage / BigQuery など) a4 ラベリングプロジェクト作成
(Vertex AIコンソール) y4 少量データのラベル付け AutoMLモデルの学習 k4 自動アノテーションの適用 u4 人間の確認・修正
具体的なワークフロー 74 データの準備 (Cloud Storage / BigQuery など) a4 ラベリングプロジェクト作成
(Vertex AIコンソール) y4 少量データのラベル付け 4 AutoMLモデルの学習 d 自動アノテーションの適用 u4 人間の確認・修正
具体的なワークフロー 74 データの準備 (Cloud Storage / BigQuery など) a4 ラベリングプロジェクト作成
(Vertex AIコンソール) y4 少量データのラベル付け 4 AutoMLモデルの学習 k4 自動アノテーションの適用 uo 人間の確認・修正
メリットと課題 8 作業時間・コスト削% 8 精度と一貫性の向 8 データ増加へのスケーラビリティ メリット 8 モデル精度への依b
8 100%自動化は難しく、Human in the Loopが必y 8 初期コストの先行投資 課題
まとめ 1 W 「Vertex AI+AutoML」でラベリングを効率" W LLM開発のデータ準備をスピードアッ W People(人間) +
AI でハイブリッド運用 まとめ
Thank You!