Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Vertex AIで実現するLLMデータアノテーションの効率化と自動化
Search
為藤アキラ
February 06, 2025
Technology
0
170
Vertex AIで実現するLLMデータアノテーションの効率化と自動化
為藤アキラ
February 06, 2025
Tweet
Share
More Decks by 為藤アキラ
See All by 為藤アキラ
AI Agent Vertex AI Agent Builder × A2A × ADKで繋げるマルチエージェント
akiratameto
1
110
[OpsJAWS Meetup33 AIOps] Amazon Bedrockガードレールで守る安全なAI運用
akiratameto
2
320
Amazon Bedrockで実現する堅牢なデータエンジニアリング
akiratameto
1
97
Bedrock カスタムモデルvs汎用モデルの比較
akiratameto
1
130
Amazon Bedrock Agents (ナレッジベースの種類)
akiratameto
1
250
DeepSeek-R1をカスタムモデルとしてAmazon Bedrockにインポートし活用
akiratameto
0
230
Amazon Bedrock Agents (基本編)
akiratameto
0
210
SageMaker Feature Storeを活かしたLLM推論
akiratameto
1
85
Other Decks in Technology
See All in Technology
Oracle Database@AWS:サービス概要のご紹介
oracle4engineer
PRO
2
770
Agentic AIが変革するAWSの開発・運用・セキュリティ ~Frontier Agentsを試してみた~ / Agentic AI transforms AWS development, operations, and security I tried Frontier Agents
yuj1osm
0
210
フルカイテン株式会社 エンジニア向け採用資料
fullkaiten
0
10k
研究開発部メンバーの働き⽅ / Sansan R&D Profile
sansan33
PRO
4
21k
会社紹介資料 / Sansan Company Profile
sansan33
PRO
11
390k
投資戦略を量産せよ 2 - マケデコセミナー(2025/12/26)
gamella
1
630
2025年 山梨の技術コミュニティを振り返る
yuukis
0
150
Introduction to Sansan Meishi Maker Development Engineer
sansan33
PRO
0
330
小さく、早く、可能性を多産する。生成AIプロジェクト / prAIrie-dog
visional_engineering_and_design
0
370
Node vs Deno vs Bun 〜推しランタイムを見つけよう〜
kamekyame
1
370
あの夜、私たちは「人間」に戻った。 ── 災害ユートピア、贈与、そしてアジャイルの再構築 / 20260108 Hiromitsu Akiba
shift_evolve
PRO
0
510
Qiita Bash アドカレ LT #1
okaru
0
170
Featured
See All Featured
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
35
3.3k
CoffeeScript is Beautiful & I Never Want to Write Plain JavaScript Again
sstephenson
162
16k
GraphQLとの向き合い方2022年版
quramy
50
14k
Easily Structure & Communicate Ideas using Wireframe
afnizarnur
194
17k
Stop Working from a Prison Cell
hatefulcrawdad
273
21k
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
231
22k
How to make the Groovebox
asonas
2
1.9k
Information Architects: The Missing Link in Design Systems
soysaucechin
0
730
The Anti-SEO Checklist Checklist. Pubcon Cyber Week
ryanjones
0
37
GraphQLの誤解/rethinking-graphql
sonatard
74
11k
End of SEO as We Know It (SMX Advanced Version)
ipullrank
2
3.9k
Fireside Chat
paigeccino
41
3.8k
Transcript
Google Cloud活用 AI/ML/LLM #1 機械学習 (ML) / 大規模言語モデル(LLM) の為のデータ準備 Vertex
AIで実現するLLMデータ アノテーションの効率化と自動化 株式会社BLUEISH 代表取締役CEO兼CTO 為藤アキラ @AkiraTameto
為藤 アキラ (Akira Tameto) 株式会社BLUEISH 代表取締役 CEO兼CTO ・直近のAIプロジェクト ・画像を中心とした機械学習とLLM
のハイブリッドのアーキテクト 自己紹介
今回のお話
よくある課題 ・LLMには大量の高品質データが必要 ・手動アノテーション=時間がかかる / コストが高い / 品質 ばらつき ・「データ増やしたいけど、全然追いつかない…」
Vertex AI Data Labelingの概要 t テキスト・画像・動画などのラベル付けをクラウドで一元管7 t 手動ラベリング+自動ラベリングの両方が可能 更にAutoMLモデル活用で効率UP! Vertex
AIのラベリング機能とは?
自動アノテーションの活用方法 E4 少量のデータでAutoMLモデル作S 54 大量データに一括ラベル付A 24 人間が確認・修正 → 精度UP 自動アノテーションは大きく3ステップ
具体的なワークフロー 4% データの準備 (Cloud Storage / BigQuery など) a` ラベリングプロジェクト作成
(Vertex AIコンソール) y` 少量データのラベル付け ` AutoMLモデルの学習 k` 自動アノテーションの適用 u` 人間の確認・修正
具体的なワークフロー 74 データの準備 (Cloud Storage / BigQuery など) HY ラベリングプロジェクト作成
(Vertex AIコンソール) y4 少量データのラベル付け 4 AutoMLモデルの学習 k4 自動アノテーションの適用 u4 人間の確認・修正
具体的なワークフロー 74 データの準備 (Cloud Storage / BigQuery など) a4 ラベリングプロジェクト作成
(Vertex AIコンソール) xy 少量データのラベル付け 4 AutoMLモデルの学習 k4 自動アノテーションの適用 u4 人間の確認・修正
具体的なワークフロー 74 データの準備 (Cloud Storage / BigQuery など) a4 ラベリングプロジェクト作成
(Vertex AIコンソール) y4 少量データのラベル付け AutoMLモデルの学習 k4 自動アノテーションの適用 u4 人間の確認・修正
具体的なワークフロー 74 データの準備 (Cloud Storage / BigQuery など) a4 ラベリングプロジェクト作成
(Vertex AIコンソール) y4 少量データのラベル付け 4 AutoMLモデルの学習 d 自動アノテーションの適用 u4 人間の確認・修正
具体的なワークフロー 74 データの準備 (Cloud Storage / BigQuery など) a4 ラベリングプロジェクト作成
(Vertex AIコンソール) y4 少量データのラベル付け 4 AutoMLモデルの学習 k4 自動アノテーションの適用 uo 人間の確認・修正
メリットと課題 8 作業時間・コスト削% 8 精度と一貫性の向 8 データ増加へのスケーラビリティ メリット 8 モデル精度への依b
8 100%自動化は難しく、Human in the Loopが必y 8 初期コストの先行投資 課題
まとめ 1 W 「Vertex AI+AutoML」でラベリングを効率" W LLM開発のデータ準備をスピードアッ W People(人間) +
AI でハイブリッド運用 まとめ
Thank You!