Upgrade to Pro — share decks privately, control downloads, hide ads and more …

INTERNET OF THINGS with IPv6 and 6Lo

Ardiansyah
September 25, 2014

INTERNET OF THINGS with IPv6 and 6Lo

Membedah serba-serba Internet of Things, khususnya yang berbasis pengalamatan IPv6 dan 6Lo, Disajikan pada kuliah umum Kapita Selekta di UAI Jakarta

Ardiansyah

September 25, 2014
Tweet

More Decks by Ardiansyah

Other Decks in Education

Transcript

  1. LECTURE at UAI INTERNET OF THINGS with IPv6 & 6Lo

    Kamis, 25 September 2014 @Universitas Al-Azhar Indonesia Ardiansyah, M.Eng Networking Lab, Computer Engineering Study Program Department of Electrical Engineering, Universitas Indonesia
  2. Chonnam National University Outline  Introduction  What is the

    Internet of Things (IoT)?  IoT Components  IoT Applications  IoT with IPv6 & 6Lo Connectivity 3
  3. Chonnam National University Introduction (3) – IPv6 Address  The

    128-bit IPv6 address is written using 32 hexadecimal numbers.  The format is x:x:x:x:x:x:x:x, where x is a 16-bit hexadecimal field, therefore each x represents four hexadecimal digits.  Example address:  2035:0001:2BC5:0000 : 0000:087C:0000:000A  Addresses: 2128 = 3.4×1038 = 3,400,000,000,000,000,000,000,000,000,000,000,000,000 8
  4. Chonnam National University IoT? (10) - IOE From any time

    ,any place connectivity for anyone, we will now have connectivity for anything/everything! 20
  5. Chonnam National University IoT? (11) - Problems  Addressing &

    Communication Model  Routing & Mobility  Type and Size of Applications  Transmission & Compression  Information & Network Security  Information & Behavior Analysis What else? 21
  6. Chonnam National University Io6 (3) I6 Station To achieve its

    goal, i6station provides: i6Station Model: a system architecture to build App open ecosystems. i6station enablers: A set of opensource software components. 25
  7. Chonnam National University 6Lo (1) IP/LoWPAN Router IP/LoWPAN Sensor Router

    IP Device IP Network (powered) LoWPAN-Extended IP Network IP/LoWPAN Router IP/LoWPAN Sensor Router IP Device IP Network (powered) LoWPAN-Extended IP Network 2007 – The IP/USN Arrives 26
  8. Chonnam National University 6Lo (2) Impact Analysis Addressing Routing Security

    Network management Low power (1-2 years lifetime on batteries) Storage limitations, low overhead Periodic sleep aware routing, low overhead Simplicity (CPU usage), low overhead Periodic sleep aware management, low overhead Low cost (<$10/unit) Stateless address generation Small or no routing tables Ease of Use, simple bootstrapping Space constraints Low bandwidth (<300kbps) Compressed addresses Low routing overhead Low packet overhead Low network overhead High density (<2-4? units/sq ft) Large address space – IPv6 Scalable and routable to *a node* Robust Easy to use and scalable IP network interaction Address routable from IP world Seamless IP routing Work end to end from IP network Compatible with SNMP, etc Challenges of IP/USN 27
  9. 6Lo (3) - Addressing : Constrained Restful Environments Application Layer

    Protocol(CoAP) : IPv6 over Low power WPAN IEEE 802.15.4 network (6LoWPAN) : Routing over LLN (RPL) 6Lo IETF LLN(Low power Lossy Network) Working Group
  10. Chonnam National University 29 802.5 Token Ring 6Lo (4) -

    Internet Concepts: Layering 802.3 Ethernet 802.11 WiFi 802.3a Ethernet 10b2 802.3i Ethernet 10bT 802.3y Ethernet 100bT 802.3ab Ethernet 1000bT 802.3an Ethernet 1G bT 802.11a WiFi 802.11b WiFi 802.11g WiFi 802.11n WiFi X3T9.5 FDDI Serial Modem GPRS ISDN DSL Sonet Transport (UDP/IP, TCP/IP) Application (Telnet, FTP, SMTP, SNMP, HTTP) Diverse Object and Data Models (HTML, XML, …, BacNet, …) 802.15.1 802.15.2 802.15.3 802.15.4 LoWPAN Network (IP) Link 2: link 3: net 4: xport 7: app 1: phy 6Lo
  11. Chonnam National University 32 6Lo (7) - Leverage existing standards,

    rather than “reinventing the wheel”  RFC 768 UDP - User Datagram Protocol [1980]  RFC 791 IPv4 – Internet Protocol [1981]  RFC 792 ICMPv4 – Internet Control Message Protocol [1981]  RFC 793 TCP – Transmission Control Protocol [1981]  RFC 862 Echo Protocol [1983]  RFC 1101 DNS Encoding of Network Names and Other Types [1989]  RFC 1191 IPv4 Path MTU Discovery [1990]  RFC 1981 IPv6 Path MTU Discovery [1996]  RFC 2131 DHCPv4 - Dynamic Host Configuration Protocol [1997]  RFC 2375 IPv6 Multicast Address Assignments [1998]  RFC 2460 IPv6 [1998]  RFC 2463 ICMPv6 - Internet Control Message Protocol for IPv6 [1998]  RFC 2765 Stateless IP/ICMP Translation Algorithm (SIIT) [2000]  RFC 3068 An Anycast Prefix for 6to4 Relay Routers [2001]  RFC 3307 Allocation Guidelines for IPv6 Multicast Addresses [2002]  RFC 3315 DHCPv6 - Dynamic Host Configuration Protocol for IPv6 [2003]  RFC 3484 Default Address Selection for IPv6 [2003]  RFC 3587 IPv6 Global Unicast Address Format [2003]  RFC 3819 Advice for Internet Subnetwork Designers [2004]  RFC 4007 IPv6 Scoped Address Architecture [2005]  RFC 4193 Unique Local IPv6 Unicast Addresses [2005]  RFC 4291 IPv6 Addressing Architecture [2006]  Proposed Standard - "Transmission of IPv6 Packets over IEEE 802.15.4 Networks" RFC 4944 (2007) RFC 6282 (2011) RFC 6282 (2012)
  12. Chonnam National University 6Lo (8) - 6LoWPAN Network Example 

    How 6LoWPAN works - The router advertises the IPv6 prefix on the backhaul link, which is used by the edge router for auto configuration. - The edge router then configures the IPv6 prefix to its IEEE802.15.4 wireless interface. - The edge router starts advertising the IPv6 prefix, which is used by the three routers. - In turn the routers advertise the same prefix to the three hosts, which also register with the edge router. 33 Adhoc Network Simple Network Extended Network
  13. Chonnam National University 34 6Lo (9) - Key Factors for

    IP over 802.15.4  Header  Standard IPv6 header is 40 bytes [RFC 2460]  Entire 802.15.4 MTU is 127 bytes [IEEE]  Often data payload is small  Fragmentation  Interoperability means that applications need not know the constraints of physical links that might carry their packets  IP packets may be large, compared to 802.15.4 max frame size  IPv6 requires all links support 1280 byte packets [RFC 2460]  Allow link-layer mesh routing under IP topology  802.15.4 subnets may utilize multiple radio hops per IP hop  Similar to LAN switching within IP routing domain in Ethernet  Allow IP routing over a mesh of 802.15.4 nodes  Options and capabilities already well-defines  Various protocols to establish routing tables  Energy calculations and 6LoWPAN impact
  14. Chonnam National University 35 6Lo (10) – 6LoWPAN Challenges 

    Large IP Address & Header => 16 bit short address / 64 bit EUID  Minimum Transfer Unit => Fragmentation  Short range & Embedded => Multiple Hops Link frame ctrl src UID len chk dst UID link payload Network packet UDP datagram or TCP stream segment transport header application payload …, modbus, BacNET/IP, … , HTML, XML, …, ZCL 128 Bytes MAX 40 B + option s 1280 Bytes MIN cls flow len hops src IP dst IP net payload 16 B 16 B NH
  15. Chonnam National University 36 6Lo (11) – IP Header Optimization

     Eliminate all fields in the IPv6 header that can be derived from the 802.15 .4 header in the common case  Source address : derived from link address  Destination address : derived from link address  Length : derived from link frame length  Traffic Class & Flow Label : zero  Next header : UDP, TCP, or ICMP  Additional IPv6 options follow as options Link frame ctrl src UID len chk dst UID Network packet 40 B 6LoWPAN adaptation header hops 3 B cls flow len hops src IP dst IP net payload NH
  16. Chonnam National University 37 6Lo (11) – IPv6 Header IEEE

    802.15.4 Frame Format IETF 6LoWPAN Format dsp 01 1 Uncompressed IPv6 address [RFC2460] 0 40 bytes 0 0 0 0 01 0 1 0 0 0 0 HC1 Fully compressed: 1 byte [RFC 6282 (2011)] Source address : derived from link address Destination address : derived from link address Traffic Class & Flow Label : zero Next header : UDP, TCP, or ICMP preamble SFD Len FCF DSN Dst16 Src16 D pan Dst EUID 64 S pan Src EUID 64 Fchk Network Header Application Data
  17. Chonnam National University 38 6Lo (12) – Compressed / UDP

    IEEE 802.15.4 Frame Format UDP IETF 6LoWPAN Format IP HC1 HC1: Source & Dest Local, next hdr=UDP IP: Hop limit UDP: 8-byte header (uncompressed) dsp Dispatch: Compressed IPv6 preamble SFD Len FCF DSN Dst16 Src16 D pan Dst EUID 64 S pan Src EUID 64 Fchk Network Header Application Data
  18. Chonnam National University 39 6Lo (13) – UDP/IP Optimization Transport

    length derived from link Subset of ports in compressed form Link frame ctrl src UID len chk dst UID Network packet 40 B 6LoWPAN adaptation header hop s cls flow len hops src IP dst IP appln payload NH 8 B UDP hdr 7 B
  19. Chonnam National University 40 6Lo (14)– Compressed / Compressed UDP

    IEEE 802.15.4 Frame Format IETF 6LoWPAN Format HC1 HC1: Source & Dest Local, next hdr=UDP IP: Hop limit UDP: HC2+3-byte header (compressed) source port = P + 4 bits, p = 61616 (0xF0B0) destination port = P + 4 bits dsp Dispatch: Compressed IPv6 preamble SFD Len FCF DSN Dst16 Src16 D pan Dst EUID 64 S pan Src EUID 64 Fchk Network Header Application Data IP UDP HC2
  20. Chonnam National University 41 6Lo (15) -Pay-as-you-go Adaptation Length FCF

    DSN DSTPAN DST SRC Dispatch IPHC Hop Limit Source Address Destination Address NHC Ports Checksum Mesh Hop 11 bytes Length FCF DSN DSTPAN DST SRC Fragment Header Dispatch IPHC Hop Limit Source Address Destination Address NHC Ports Checksum Mesh Hop Fragmented 15 bytes Compressed IPv6 Compressed UDP Length FCF DSN DSTPAN DST SRC Dispatch IPHC Hop Limit NHC Ports Checksum Single Hop* 7 bytes 802.15.4 Link addresses of o riginator and final * including each of multiple IP hops
  21. IEEE 802.15.4 Mesh Addressing Fragmentation Dispatch Compressed IP Payload… 1

    0 O F Hops (4) Originator Addr (16-64) Datagram Tag (16) 1 0 O F 0xF Hops (8) 1 1 0 1 1 1 Offset (8) Final Addr (16-64) Datagram Size (11) Datagram Tag (16) Datagram Size (11) Originator Addr (16-64) Final Addr (16-64) Dispatch (6) 0 1 0x3F 0 1 Dispatch (8) 0 0 0 0 IEEE 802.15.4 Fragmentation Dispatch Compressed IP Payload… IEEE 802.15.4 Dispatch Compressed IP Payload… Mesh Addressing IEEE 802.15.4 Dispatch Compressed IP Payload… Single Hop, No Fragmentation Multihop, No Fragmentation Single Hop, Fragmentation Multi Hop, Fragmentation Dispatch Header (1-2 bytes) Mesh Addressing Header (5-18 bytes) Fragmentation Header (4-5 bytes)
  22. Chonnam National University 43 6Lo (17) Adaptation Summary Efficient Transmission

    of IPv6 Datagrams http://tools.ietf.org/html/rfc4944 Updated by RFC 6282, RFC 6775 IPv6 Base Hop-by-Hop Routing Fragment Destination IPv6 Stacked Header Format IPv6 Options Payload 15.4 Header IPv6 HC Payload 15.4 Header Payload 15.4 Header IPv6 HC NH HC Payload 15.4 Header Fragmentation IPv6 HC NH HC Payload Dispatch Header 6LowPAN Stacked Adaptation Header Format
  23. Chonnam National University 6Lo (18) – Example 1  Develop

    ZigBee IP Device with 6LoWPAN Support 6LoWPAN Node Hardware Based-on TI CC2530 Contiki RTOS 2.6 44
  24. Chonnam National University 6Lo (20) –Example 2  Develop Battery-less

    6LoWPAN by Use of Energy Harvesting Where, E(t) = remaining energy of the home automation node Ps(t) = total power output from energy harvesting source Pc(t) = total energy consumption of the automation node 46
  25. 6Lo (21) – Next maybe  Routing & Apps :

    Constrained Restful Environments Application Layer Protocol(CoAP) : IPv6 over Low power WPAN IEEE 802.15.4 network (6LoWPAN) : Routing over LLN (RPL) 6Lo IETF LLN(Low power Lossy Network) Working Group
  26. Chonnam National University 6Lo (22) – Future Work  Intrusion

    Detection System for 6Lo-based IoT  Study about  IPv6 Packets over Bluetooth Low Energy (6Lo-BTLE) for Health Device Profile Communication System 48
  27. Chonnam National University For More………  http://ietf.org  http://iot6.eu 

    http://www.ipso-alliance.org/  http://internetofthings.or.id  http://ardisragen.net 49