Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Design for Retry (Oneshot Budapest)
Search
Aria Stewart
November 21, 2014
Programming
0
65
Design for Retry (Oneshot Budapest)
Aria Stewart
November 21, 2014
Tweet
Share
More Decks by Aria Stewart
See All by Aria Stewart
Nuts and Bolts of Internationalization
aredridel
0
210
Design for Retry (Nodevember)
aredridel
0
55
Other Decks in Programming
See All in Programming
PC-6001でPSG曲を鳴らすまでを全部NetBSD上の Makefile に押し込んでみた / osc2025hiroshima
tsutsui
0
200
Basic Architectures
denyspoltorak
0
160
脳の「省エネモード」をデバッグする ~System 1(直感)と System 2(論理)の切り替え~
panda728
PRO
0
130
The Art of Re-Architecture - Droidcon India 2025
siddroid
0
160
クラウドに依存しないS3を使った開発術
simesaba80
0
210
公共交通オープンデータ × モバイルUX 複雑な運行情報を 『直感』に変換する技術
tinykitten
PRO
0
180
Python札幌 LT資料
t3tra
7
1.1k
perlをWebAssembly上で動かすと何が嬉しいの??? / Where does Perl-on-Wasm actually make sense?
mackee
0
280
AIによるイベントストーミング図からのコード生成 / AI-powered code generation from Event Storming diagrams
nrslib
1
450
React 19でつくる「気持ちいいUI」- 楽観的UIのすすめ
himorishige
11
2.9k
Pythonではじめるオープンデータ分析〜書籍の紹介と書籍で紹介しきれなかった事例の紹介〜
welliving
3
750
[AI Engineering Summit Tokyo 2025] LLMは計画業務のゲームチェンジャーか? 最適化業務における活⽤の可能性と限界
terryu16
2
220
Featured
See All Featured
How to Get Subject Matter Experts Bought In and Actively Contributing to SEO & PR Initiatives.
livdayseo
0
38
Color Theory Basics | Prateek | Gurzu
gurzu
0
170
The Hidden Cost of Media on the Web [PixelPalooza 2025]
tammyeverts
2
130
The AI Revolution Will Not Be Monopolized: How open-source beats economies of scale, even for LLMs
inesmontani
PRO
3
2.8k
The MySQL Ecosystem @ GitHub 2015
samlambert
251
13k
Unsuck your backbone
ammeep
671
58k
Connecting the Dots Between Site Speed, User Experience & Your Business [WebExpo 2025]
tammyeverts
10
770
Digital Projects Gone Horribly Wrong (And the UX Pros Who Still Save the Day) - Dean Schuster
uxyall
0
120
The Illustrated Children's Guide to Kubernetes
chrisshort
51
51k
We Have a Design System, Now What?
morganepeng
54
8k
StorybookのUI Testing Handbookを読んだ
zakiyama
31
6.5k
Optimizing for Happiness
mojombo
379
70k
Transcript
Design for Retry: Microservices, REST, and why Idempotency is the
only way to scale I'm Aria Stewart, that's @aredridel just about everywhere. I'm here thanks to PayPal. I work on the open source Kraken.js framework.
I'm going to talk about errors. It's going to be
okay.
if (err) { alert(err.message); } else { doMyThing(); }
We all know HTTP
2xx OK 3xx Go elsewhere 4xx Tell user what they
did wrong 5xx Bail out and log an error I'd call this Error avoidance
You can't avoid errors
Here's the secret Handle errors instead
4xx Tell the user what they did wrong 5xx Save
that request and do something with it later.
Retry it 5xx are errors the requestor can handle
But you can't just do things twice? We must make
operations idempotent
Idempotency Repeated actions have no effect, give the same result
This means being smart about IDs. Don't recycle! Check if things are already done. They are? Just give the same answer again.
Causes! —database down —bug in a service —Deploy in progress
—power failure —kicked a cable —Network congestion —Capacity exceeded —Microbursts
—Tree fell on the data center —earthquake —tornado —birds, snakes
and aeroplanes —Black Friday —Slashdot effect —Interns —QA tests —DoS attack
You need a queue
Lots of ways to do it Database on each node.
Maybe LevelDB? Log file Queue server
gearman Queues built in There are many alternatives, but gearmand
is very simple. The memcache of job queues.
Three statuses: —OK (Like 200) —FAIL (Like 400) —ERROR (Like
500)
design so ERROR can be retried.
gearmand automatically tries a job ERROR again. And again. And
again.
If it isn't sure it worked? Tries it again.
You cannot know if an error is a failure.
Error handling gets simpler —Exception? ERROR. —Database down? ERROR. —Downstream
service timeout? ERROR. Maybe you retry right away.
How many of you have used a job queue?
You have used a job queue
Let me tell you about one TRILLIONS of messages MILLIONS
of nodes 100% availability (at least partial) for years. 32 years. Resilient to MILLIONS of bad actors. It is attached to the most malicious network.
EMAIL. 250 OK 4xx RETRY 5xx Fail
Responsibility for messages 250 - accept responsibility 4xx - reject
responsibility 5xx - return responsibility
reject responsibility. If there's an error? Fail fast. The requester
can retry.
Fail fast. Queue work you can't reject. Reject everything you
can if there is an error.
You need a smart client. Keeps outstanding requests. Resubmit. Try
a different server! Try a second queue service. Maybe have a fallback plan.
Smart Clients on the device Toto, we're not in AWS
anymore.
Ever lose an email because you've been logged out?
Latency + Mutable state = Distributed system CAP Theorem Applies!
C = Consistency If there's state that one part knows
of that another doesn't? That's inconsistency.
Job queues are controlled inconsistency.
Ever try to write email on the web while not
on the Internet? It's cloud easy!
This is really good for offline-first design! Being offline is
the ultimate retriable error.
Some ideas
Use your queue as a place to measure for system
sizing
Queue things in localStorage
Use third-party storage
Integrate third-party services with this approach.
Use different strategies for available resources vs contended
Thank you! I hope you have lots of ideas queued
up. Save your ideas and unspool them onto Twitter when you get home. Let me know if this changed how you think about designing applications!