Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Taking ML to production - a journey
Search
Arnon Rotem-Gal-Oz
July 06, 2021
Technology
0
120
Taking ML to production - a journey
Go over some of the complexities of turning a machine learning solution to one used in production
Arnon Rotem-Gal-Oz
July 06, 2021
Tweet
Share
More Decks by Arnon Rotem-Gal-Oz
See All by Arnon Rotem-Gal-Oz
Coding with AI
arnonrgo
0
31
Brownfield Architecture transformations
arnonrgo
0
130
Software architecture 101
arnonrgo
0
1.6k
Apache Spark - Overview
arnonrgo
0
45
Topics in Distributed Systems
arnonrgo
0
31
Docker & Kubernetes
arnonrgo
0
25
Data Security @ the personal level
arnonrgo
0
27
Microservices it's deja vu all over again
arnonrgo
0
25
Big Data in the Cloud - Welcome to cost oriented design
arnonrgo
0
21
Other Decks in Technology
See All in Technology
AIで急増した生産「量」の荒波をCodeRabbitで乗りこなそう
moongift
PRO
0
590
コミュニティと共に変化する 私とFusicの8年間
ayasamind
0
200
初海外がre:Inventだった人間の感じたこと
tommy0124
1
200
決済システムの信頼性を支える技術と運用の実践
ykagano
0
140
実践マルチモーダル検索!
shibuiwilliam
3
590
[AWS 秋のオブザーバビリティ祭り 2025 〜最新アップデートと生成 AI × オブザーバビリティ〜] Amazon Bedrock AgentCore で実現!お手軽 AI エージェントオブザーバビリティ
0nihajim
2
370
kotlin-lsp の開発開始に触発されて、Emacs で Kotlin 開発に挑戦した記録 / kotlin‑lsp as a Catalyst: My Journey to Kotlin Development in Emacs
nabeo
2
360
re:Inventに行きたい いつか行きたい 行けるようにできることは?
yama3133
0
110
어떤 개발자가 되고 싶은가?
arawn
1
450
Raycast AI APIを使ってちょっと便利なAI拡張機能を作ってみた
kawamataryo
1
250
品質保証の取り組みを広げる仕組みづくり〜スキルの移譲と自律を支える実践知〜
tarappo
1
130
How Fast Is Fast Enough? [PerfNow 2025]
tammyeverts
2
280
Featured
See All Featured
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
231
22k
Visualization
eitanlees
150
16k
Code Reviewing Like a Champion
maltzj
526
40k
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
21
1.2k
Fantastic passwords and where to find them - at NoRuKo
philnash
52
3.5k
How to Create Impact in a Changing Tech Landscape [PerfNow 2023]
tammyeverts
55
3.1k
KATA
mclloyd
PRO
32
15k
Unsuck your backbone
ammeep
671
58k
Designing for humans not robots
tammielis
254
26k
Documentation Writing (for coders)
carmenintech
76
5.1k
RailsConf 2023
tenderlove
30
1.3k
Facilitating Awesome Meetings
lara
57
6.6k
Transcript
Taking ML to production - A journey Arnon Rotem-Gal-Oz
Mental model of the probelm Admission Intubation Alert >6 hours
Challlenge 1 defining the problem
A Perfect Representation of the Machine Learning Cycle from start
to end | Image Source: MLOps (Published under Creative Commons Attribution 4.0 International Public License and used with attribution (“INNOQ”))
None
Challenge 2 – how we measure
Challenge 3 Data quality
None
Challenge 5 different types of data Model(s) text time series
categorical
Challenge 6 labeling Admission Intubation
Challenge 7 dealing with imballance
Challenge 8 Model experimentation cycle
Modeling
Challenge 9 – Overfit
None
Moving to production…
Challenge 10 – model degredation in production Theory Reality
Challenge11 – Is it really generalized?
Challenge 12 model validation and verification
The road to production…