Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Taking ML to production - a journey
Search
Arnon Rotem-Gal-Oz
July 06, 2021
Technology
0
110
Taking ML to production - a journey
Go over some of the complexities of turning a machine learning solution to one used in production
Arnon Rotem-Gal-Oz
July 06, 2021
Tweet
Share
More Decks by Arnon Rotem-Gal-Oz
See All by Arnon Rotem-Gal-Oz
Brownfield Architecture transformations
arnonrgo
0
75
Software architecture 101
arnonrgo
0
1.2k
Apache Spark - Overview
arnonrgo
0
38
Topics in Distributed Systems
arnonrgo
0
24
Docker & Kubernetes
arnonrgo
0
19
Data Security @ the personal level
arnonrgo
0
24
Microservices it's deja vu all over again
arnonrgo
0
22
Big Data in the Cloud - Welcome to cost oriented design
arnonrgo
0
17
Big Data Overview
arnonrgo
0
10
Other Decks in Technology
See All in Technology
NilAway による静的解析で「10 億ドル」を節約する #kyotogo / Kyoto Go 56th
ytaka23
3
370
サイバー攻撃を想定したセキュリティガイドライン 策定とASM及びCNAPPの活用方法
syoshie
3
1.2k
GitHub Copilot のテクニック集/GitHub Copilot Techniques
rayuron
24
11k
小学3年生夏休みの自由研究「夏休みに Copilot で遊んでみた」
taichinakamura
0
150
Amazon Kendra GenAI Index 登場でどう変わる? 評価から学ぶ最適なRAG構成
naoki_0531
0
100
アップデート紹介:AWS Data Transfer Terminal
stknohg
PRO
0
180
KubeCon NA 2024 Recap: How to Move from Ingress to Gateway API with Minimal Hassle
ysakotch
0
200
成果を出しながら成長する、アウトプット駆動のキャッチアップ術 / Output-driven catch-up techniques to grow while producing results
aiandrox
0
180
MLOps の現場から
asei
6
630
統計データで2024年の クラウド・インフラ動向を眺める
ysknsid25
2
840
生成AIのガバナンスの全体像と現実解
fnifni
1
180
ハイテク休憩
sat
PRO
2
140
Featured
See All Featured
Designing for Performance
lara
604
68k
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
32
2.7k
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
169
50k
The Pragmatic Product Professional
lauravandoore
32
6.3k
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
44
6.9k
Fontdeck: Realign not Redesign
paulrobertlloyd
82
5.3k
RailsConf 2023
tenderlove
29
940
It's Worth the Effort
3n
183
28k
Testing 201, or: Great Expectations
jmmastey
40
7.1k
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
26
1.9k
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
PRO
10
810
Thoughts on Productivity
jonyablonski
67
4.4k
Transcript
Taking ML to production - A journey Arnon Rotem-Gal-Oz
Mental model of the probelm Admission Intubation Alert >6 hours
Challlenge 1 defining the problem
A Perfect Representation of the Machine Learning Cycle from start
to end | Image Source: MLOps (Published under Creative Commons Attribution 4.0 International Public License and used with attribution (“INNOQ”))
None
Challenge 2 – how we measure
Challenge 3 Data quality
None
Challenge 5 different types of data Model(s) text time series
categorical
Challenge 6 labeling Admission Intubation
Challenge 7 dealing with imballance
Challenge 8 Model experimentation cycle
Modeling
Challenge 9 – Overfit
None
Moving to production…
Challenge 10 – model degredation in production Theory Reality
Challenge11 – Is it really generalized?
Challenge 12 model validation and verification
The road to production…