Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Taking ML to production - a journey
Search
Sponsored
·
Ship Features Fearlessly
Turn features on and off without deploys. Used by thousands of Ruby developers.
→
Arnon Rotem-Gal-Oz
PRO
July 06, 2021
Technology
0
120
Taking ML to production - a journey
Go over some of the complexities of turning a machine learning solution to one used in production
Arnon Rotem-Gal-Oz
PRO
July 06, 2021
Tweet
Share
More Decks by Arnon Rotem-Gal-Oz
See All by Arnon Rotem-Gal-Oz
Coding with AI
arnonrgo
PRO
0
5
Brownfield Architecture transformations
arnonrgo
PRO
0
140
Software architecture 101
arnonrgo
PRO
0
1.7k
Apache Spark - Overview
arnonrgo
PRO
0
46
Topics in Distributed Systems
arnonrgo
PRO
0
33
Docker & Kubernetes
arnonrgo
PRO
0
27
Data Security @ the personal level
arnonrgo
PRO
0
28
Microservices it's deja vu all over again
arnonrgo
PRO
0
26
Big Data in the Cloud - Welcome to cost oriented design
arnonrgo
PRO
0
23
Other Decks in Technology
See All in Technology
AIエージェントを開発しよう!-AgentCore活用の勘所-
yukiogawa
0
180
フルカイテン株式会社 エンジニア向け採用資料
fullkaiten
0
10k
【Oracle Cloud ウェビナー】[Oracle AI Database + AWS] Oracle Database@AWSで広がるクラウドの新たな選択肢とAI時代のデータ戦略
oracle4engineer
PRO
2
180
量子クラウドサービスの裏側 〜Deep Dive into OQTOPUS〜
oqtopus
0
140
Embedded SREの終わりを設計する 「なんとなく」から計画的な自立支援へ
sansantech
PRO
3
2.6k
顧客との商談議事録をみんなで読んで顧客解像度を上げよう
shibayu36
0
280
SREのプラクティスを用いた3領域同時 マネジメントへの挑戦 〜SRE・情シス・セキュリティを統合した チーム運営術〜
coconala_engineer
2
750
ランサムウェア対策としてのpnpm導入のススメ
ishikawa_satoru
0
220
顧客の言葉を、そのまま信じない勇気
yamatai1212
1
360
Claude_CodeでSEOを最適化する_AI_Ops_Community_Vol.2__マーケティングx_AIはここまで進化した.pdf
riku_423
2
610
[CV勉強会@関東 World Model 読み会] Orbis: Overcoming Challenges of Long-Horizon Prediction in Driving World Models (Mousakhan+, NeurIPS 2025)
abemii
0
150
pool.ntp.orgに ⾃宅サーバーで 参加してみたら...
tanyorg
0
320
Featured
See All Featured
Faster Mobile Websites
deanohume
310
31k
DBのスキルで生き残る技術 - AI時代におけるテーブル設計の勘所
soudai
PRO
62
50k
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
49
9.9k
Practical Orchestrator
shlominoach
191
11k
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
32
2.1k
エンジニアに許された特別な時間の終わり
watany
106
230k
Claude Code のすすめ
schroneko
67
210k
Making Projects Easy
brettharned
120
6.6k
How to build a perfect <img>
jonoalderson
1
4.9k
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
47
7.9k
Agile Leadership in an Agile Organization
kimpetersen
PRO
0
83
sira's awesome portfolio website redesign presentation
elsirapls
0
150
Transcript
Taking ML to production - A journey Arnon Rotem-Gal-Oz
Mental model of the probelm Admission Intubation Alert >6 hours
Challlenge 1 defining the problem
A Perfect Representation of the Machine Learning Cycle from start
to end | Image Source: MLOps (Published under Creative Commons Attribution 4.0 International Public License and used with attribution (“INNOQ”))
None
Challenge 2 – how we measure
Challenge 3 Data quality
None
Challenge 5 different types of data Model(s) text time series
categorical
Challenge 6 labeling Admission Intubation
Challenge 7 dealing with imballance
Challenge 8 Model experimentation cycle
Modeling
Challenge 9 – Overfit
None
Moving to production…
Challenge 10 – model degredation in production Theory Reality
Challenge11 – Is it really generalized?
Challenge 12 model validation and verification
The road to production…