Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Taking ML to production - a journey
Search
Arnon Rotem-Gal-Oz
PRO
July 06, 2021
Technology
0
110
Taking ML to production - a journey
Go over some of the complexities of turning a machine learning solution to one used in production
Arnon Rotem-Gal-Oz
PRO
July 06, 2021
Tweet
Share
More Decks by Arnon Rotem-Gal-Oz
See All by Arnon Rotem-Gal-Oz
Brownfield Architecture transformations
arnonrgo
PRO
0
72
Software architecture 101
arnonrgo
PRO
0
1.2k
Apache Spark - Overview
arnonrgo
PRO
0
38
Topics in Distributed Systems
arnonrgo
PRO
0
23
Docker & Kubernetes
arnonrgo
PRO
0
16
Data Security @ the personal level
arnonrgo
PRO
0
24
Microservices it's deja vu all over again
arnonrgo
PRO
0
22
Big Data in the Cloud - Welcome to cost oriented design
arnonrgo
PRO
0
17
Big Data Overview
arnonrgo
PRO
0
10
Other Decks in Technology
See All in Technology
スクラムチームを立ち上げる〜チーム開発で得られたもの・得られなかったもの〜
ohnoeight
2
350
SREが投資するAIOps ~ペアーズにおけるLLM for Developerへの取り組み~
takumiogawa
1
180
Shopifyアプリ開発における Shopifyの機能活用
sonatard
4
250
Lambda10周年!Lambdaは何をもたらしたか
smt7174
2
110
Amplify Gen2 Deep Dive / バックエンドの型をいかにしてフロントエンドへ伝えるか #TSKaigi #TSKaigiKansai #AWSAmplifyJP
tacck
PRO
0
370
IBC 2024 動画技術関連レポート / IBC 2024 Report
cyberagentdevelopers
PRO
0
110
OCI Security サービス 概要
oracle4engineer
PRO
0
6.5k
Terraform Stacks入門 #HashiTalks
msato
0
350
VideoMamba: State Space Model for Efficient Video Understanding
chou500
0
190
Why App Signing Matters for Your Android Apps - Android Bangkok Conference 2024
akexorcist
0
120
AWS Lambda のトラブルシュートをしていて思うこと
kazzpapa3
2
170
隣接領域をBeyondするFinatextのエンジニア組織設計 / beyond-engineering-areas
stajima
1
270
Featured
See All Featured
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
PRO
10
720
VelocityConf: Rendering Performance Case Studies
addyosmani
325
24k
Teambox: Starting and Learning
jrom
133
8.8k
Build The Right Thing And Hit Your Dates
maggiecrowley
33
2.4k
Learning to Love Humans: Emotional Interface Design
aarron
273
40k
How to train your dragon (web standard)
notwaldorf
88
5.7k
Sharpening the Axe: The Primacy of Toolmaking
bcantrill
38
1.8k
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
126
18k
What’s in a name? Adding method to the madness
productmarketing
PRO
22
3.1k
Imperfection Machines: The Place of Print at Facebook
scottboms
265
13k
Rails Girls Zürich Keynote
gr2m
94
13k
Scaling GitHub
holman
458
140k
Transcript
Taking ML to production - A journey Arnon Rotem-Gal-Oz
Mental model of the probelm Admission Intubation Alert >6 hours
Challlenge 1 defining the problem
A Perfect Representation of the Machine Learning Cycle from start
to end | Image Source: MLOps (Published under Creative Commons Attribution 4.0 International Public License and used with attribution (“INNOQ”))
None
Challenge 2 – how we measure
Challenge 3 Data quality
None
Challenge 5 different types of data Model(s) text time series
categorical
Challenge 6 labeling Admission Intubation
Challenge 7 dealing with imballance
Challenge 8 Model experimentation cycle
Modeling
Challenge 9 – Overfit
None
Moving to production…
Challenge 10 – model degredation in production Theory Reality
Challenge11 – Is it really generalized?
Challenge 12 model validation and verification
The road to production…