Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Taking ML to production - a journey
Search
Arnon Rotem-Gal-Oz
PRO
July 06, 2021
Technology
0
120
Taking ML to production - a journey
Go over some of the complexities of turning a machine learning solution to one used in production
Arnon Rotem-Gal-Oz
PRO
July 06, 2021
Tweet
Share
More Decks by Arnon Rotem-Gal-Oz
See All by Arnon Rotem-Gal-Oz
Coding with AI
arnonrgo
PRO
0
5
Brownfield Architecture transformations
arnonrgo
PRO
0
140
Software architecture 101
arnonrgo
PRO
0
1.7k
Apache Spark - Overview
arnonrgo
PRO
0
46
Topics in Distributed Systems
arnonrgo
PRO
0
33
Docker & Kubernetes
arnonrgo
PRO
0
27
Data Security @ the personal level
arnonrgo
PRO
0
28
Microservices it's deja vu all over again
arnonrgo
PRO
0
26
Big Data in the Cloud - Welcome to cost oriented design
arnonrgo
PRO
0
23
Other Decks in Technology
See All in Technology
生成AIを活用した音声文字起こしシステムの2つの構築パターンについて
miu_crescent
PRO
3
220
量子クラウドサービスの裏側 〜Deep Dive into OQTOPUS〜
oqtopus
0
140
Ruby版 JSXのRuxが気になる
sansantech
PRO
0
160
Oracle Cloud Observability and Management Platform - OCI 運用監視サービス概要 -
oracle4engineer
PRO
2
14k
今日から始めるAmazon Bedrock AgentCore
har1101
4
420
SREが向き合う大規模リアーキテクチャ 〜信頼性とアジリティの両立〜
zepprix
0
470
1,000 にも届く AWS Organizations 組織のポリシー運用をちゃんとしたい、という話
kazzpapa3
0
110
顧客との商談議事録をみんなで読んで顧客解像度を上げよう
shibayu36
0
280
StrandsとNeptuneを使ってナレッジグラフを構築する
yakumo
1
120
Context Engineeringの取り組み
nutslove
0
380
コスト削減から「セキュリティと利便性」を担うプラットフォームへ
sansantech
PRO
3
1.6k
Oracle AI Database移行・アップグレード勉強会 - RAT活用編
oracle4engineer
PRO
0
110
Featured
See All Featured
SERP Conf. Vienna - Web Accessibility: Optimizing for Inclusivity and SEO
sarafernandez
1
1.3k
Deep Space Network (abreviated)
tonyrice
0
64
Reality Check: Gamification 10 Years Later
codingconduct
0
2k
AI Search: Where Are We & What Can We Do About It?
aleyda
0
7k
Bridging the Design Gap: How Collaborative Modelling removes blockers to flow between stakeholders and teams @FastFlow conf
baasie
0
450
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
35
2.4k
Dominate Local Search Results - an insider guide to GBP, reviews, and Local SEO
greggifford
PRO
0
79
[RailsConf 2023] Rails as a piece of cake
palkan
59
6.3k
The Cost Of JavaScript in 2023
addyosmani
55
9.5k
DevOps and Value Stream Thinking: Enabling flow, efficiency and business value
helenjbeal
1
100
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
12
1k
16th Malabo Montpellier Forum Presentation
akademiya2063
PRO
0
52
Transcript
Taking ML to production - A journey Arnon Rotem-Gal-Oz
Mental model of the probelm Admission Intubation Alert >6 hours
Challlenge 1 defining the problem
A Perfect Representation of the Machine Learning Cycle from start
to end | Image Source: MLOps (Published under Creative Commons Attribution 4.0 International Public License and used with attribution (“INNOQ”))
None
Challenge 2 – how we measure
Challenge 3 Data quality
None
Challenge 5 different types of data Model(s) text time series
categorical
Challenge 6 labeling Admission Intubation
Challenge 7 dealing with imballance
Challenge 8 Model experimentation cycle
Modeling
Challenge 9 – Overfit
None
Moving to production…
Challenge 10 – model degredation in production Theory Reality
Challenge11 – Is it really generalized?
Challenge 12 model validation and verification
The road to production…