Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Taking ML to production - a journey
Search
Arnon Rotem-Gal-Oz
July 06, 2021
Technology
0
120
Taking ML to production - a journey
Go over some of the complexities of turning a machine learning solution to one used in production
Arnon Rotem-Gal-Oz
July 06, 2021
Tweet
Share
More Decks by Arnon Rotem-Gal-Oz
See All by Arnon Rotem-Gal-Oz
Coding with AI
arnonrgo
0
31
Brownfield Architecture transformations
arnonrgo
0
130
Software architecture 101
arnonrgo
0
1.6k
Apache Spark - Overview
arnonrgo
0
45
Topics in Distributed Systems
arnonrgo
0
31
Docker & Kubernetes
arnonrgo
0
25
Data Security @ the personal level
arnonrgo
0
27
Microservices it's deja vu all over again
arnonrgo
0
25
Big Data in the Cloud - Welcome to cost oriented design
arnonrgo
0
21
Other Decks in Technology
See All in Technology
研究開発部メンバーの働き⽅ / Sansan R&D Profile
sansan33
PRO
3
20k
M5製品で作るポン置きセルラー対応カメラ
sayacom
0
170
実装で解き明かす並行処理の歴史
zozotech
PRO
1
640
Trust as Infrastructure
bcantrill
1
370
英語は話せません!それでも海外チームと信頼関係を作るため、対話を重ねた2ヶ月間のまなび
niioka_97
0
130
Large Vision Language Modelを用いた 文書画像データ化作業自動化の検証、運用 / shibuya_AI
sansan_randd
0
130
リーダーになったら未来を語れるようになろう/Speak the Future
sanogemaru
0
360
職種別ミートアップで社内から盛り上げる アウトプット文化の醸成と関係強化/ #DevRelKaigi
nishiuma
2
160
スタートアップにおけるこれからの「データ整備」
shomaekawa
2
340
「AI駆動PO」を考えてみる - 作る速さから価値のスループットへ:検査・適応で未来を開発 / AI-driven product owner. scrummat2025
yosuke_nagai
3
800
AI時代だからこそ考える、僕らが本当につくりたいスクラムチーム / A Scrum Team we really want to create in this AI era
takaking22
7
4k
これがLambdaレス時代のChatOpsだ!実例で学ぶAmazon Q Developerカスタムアクション活用法
iwamot
PRO
5
200
Featured
See All Featured
Speed Design
sergeychernyshev
32
1.1k
Helping Users Find Their Own Way: Creating Modern Search Experiences
danielanewman
30
2.9k
Java REST API Framework Comparison - PWX 2021
mraible
33
8.9k
Keith and Marios Guide to Fast Websites
keithpitt
411
23k
[RailsConf 2023] Rails as a piece of cake
palkan
57
5.9k
Embracing the Ebb and Flow
colly
88
4.8k
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
140
34k
GraphQLの誤解/rethinking-graphql
sonatard
73
11k
Gamification - CAS2011
davidbonilla
81
5.5k
Faster Mobile Websites
deanohume
310
31k
The Psychology of Web Performance [Beyond Tellerrand 2023]
tammyeverts
49
3.1k
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
229
22k
Transcript
Taking ML to production - A journey Arnon Rotem-Gal-Oz
Mental model of the probelm Admission Intubation Alert >6 hours
Challlenge 1 defining the problem
A Perfect Representation of the Machine Learning Cycle from start
to end | Image Source: MLOps (Published under Creative Commons Attribution 4.0 International Public License and used with attribution (“INNOQ”))
None
Challenge 2 – how we measure
Challenge 3 Data quality
None
Challenge 5 different types of data Model(s) text time series
categorical
Challenge 6 labeling Admission Intubation
Challenge 7 dealing with imballance
Challenge 8 Model experimentation cycle
Modeling
Challenge 9 – Overfit
None
Moving to production…
Challenge 10 – model degredation in production Theory Reality
Challenge11 – Is it really generalized?
Challenge 12 model validation and verification
The road to production…