Lock in $30 Savings on PRO—Offer Ends Soon! ⏳
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Taking ML to production - a journey
Search
Arnon Rotem-Gal-Oz
July 06, 2021
Technology
0
120
Taking ML to production - a journey
Go over some of the complexities of turning a machine learning solution to one used in production
Arnon Rotem-Gal-Oz
July 06, 2021
Tweet
Share
More Decks by Arnon Rotem-Gal-Oz
See All by Arnon Rotem-Gal-Oz
Coding with AI
arnonrgo
0
32
Brownfield Architecture transformations
arnonrgo
0
140
Software architecture 101
arnonrgo
0
1.7k
Apache Spark - Overview
arnonrgo
0
46
Topics in Distributed Systems
arnonrgo
0
32
Docker & Kubernetes
arnonrgo
0
26
Data Security @ the personal level
arnonrgo
0
28
Microservices it's deja vu all over again
arnonrgo
0
26
Big Data in the Cloud - Welcome to cost oriented design
arnonrgo
0
23
Other Decks in Technology
See All in Technology
LLM-Readyなデータ基盤を高速に構築するためのアジャイルデータモデリングの実例
kashira
0
270
今年のデータ・ML系アップデートと気になるアプデのご紹介
nayuts
1
510
AWS運用を効率化する!AWS Organizationsを軸にした一元管理の実践/nikkei-tech-talk-202512
nikkei_engineer_recruiting
0
110
AWS re:Invent 2025~初参加の成果と学び~
kubomasataka
0
120
Amazon Quick Suite で始める手軽な AI エージェント
shimy
0
220
寫了幾年 Code,然後呢?軟體工程師必須重新認識的 DevOps
cheng_wei_chen
1
1.5k
Strands Agents × インタリーブ思考 で変わるAIエージェント設計 / Strands Agents x Interleaved Thinking AI Agents
takanorig
2
230
RAG/Agent開発のアップデートまとめ
taka0709
0
190
Lambdaの常識はどう変わる?!re:Invent 2025 before after
iwatatomoya
1
630
文字列の並び順 / Unicode Collation
tmtms
3
610
Lookerで実現するセキュアな外部データ提供
zozotech
PRO
0
170
regrowth_tokyo_2025_securityagent
hiashisan
0
260
Featured
See All Featured
Mobile First: as difficult as doing things right
swwweet
225
10k
Balancing Empowerment & Direction
lara
5
810
Music & Morning Musume
bryan
46
7k
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
37
2.7k
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
48
9.8k
Six Lessons from altMBA
skipperchong
29
4.1k
Side Projects
sachag
455
43k
Done Done
chrislema
186
16k
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
31
9.8k
Helping Users Find Their Own Way: Creating Modern Search Experiences
danielanewman
31
3k
GraphQLとの向き合い方2022年版
quramy
50
14k
The Illustrated Children's Guide to Kubernetes
chrisshort
51
51k
Transcript
Taking ML to production - A journey Arnon Rotem-Gal-Oz
Mental model of the probelm Admission Intubation Alert >6 hours
Challlenge 1 defining the problem
A Perfect Representation of the Machine Learning Cycle from start
to end | Image Source: MLOps (Published under Creative Commons Attribution 4.0 International Public License and used with attribution (“INNOQ”))
None
Challenge 2 – how we measure
Challenge 3 Data quality
None
Challenge 5 different types of data Model(s) text time series
categorical
Challenge 6 labeling Admission Intubation
Challenge 7 dealing with imballance
Challenge 8 Model experimentation cycle
Modeling
Challenge 9 – Overfit
None
Moving to production…
Challenge 10 – model degredation in production Theory Reality
Challenge11 – Is it really generalized?
Challenge 12 model validation and verification
The road to production…