$30 off During Our Annual Pro Sale. View Details »
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Taking ML to production - a journey
Search
Arnon Rotem-Gal-Oz
July 06, 2021
Technology
0
120
Taking ML to production - a journey
Go over some of the complexities of turning a machine learning solution to one used in production
Arnon Rotem-Gal-Oz
July 06, 2021
Tweet
Share
More Decks by Arnon Rotem-Gal-Oz
See All by Arnon Rotem-Gal-Oz
Coding with AI
arnonrgo
0
32
Brownfield Architecture transformations
arnonrgo
0
140
Software architecture 101
arnonrgo
0
1.6k
Apache Spark - Overview
arnonrgo
0
45
Topics in Distributed Systems
arnonrgo
0
31
Docker & Kubernetes
arnonrgo
0
25
Data Security @ the personal level
arnonrgo
0
27
Microservices it's deja vu all over again
arnonrgo
0
25
Big Data in the Cloud - Welcome to cost oriented design
arnonrgo
0
22
Other Decks in Technology
See All in Technology
事業部のプロジェクト進行と開発チームの改善の “時間軸" のすり合わせ
konifar
9
1.5k
[続・営業向け 誰でも話せるOCI セールストーク] AWSよりOCIの優位性が分からない編(2025年11月21日開催)
oracle4engineer
PRO
1
160
【ASW21-02】STAMP/CAST分析における生成AIの支援 ~羽田空港航空機衝突事故を題材として (Support of Generative AI in STAMP/CAST Analysis - A Case Study Based on the Haneda Airport Aircraft Accident -)
hianraku9498
2
390
経営から紐解くデータマネジメント
pacocat
8
1.7k
Digitization部 紹介資料
sansan33
PRO
1
6k
How native lazy objects will change Doctrine and Symfony forever
beberlei
1
230
『星の世界の地図の話: Google Sky MapをAI Agentでよみがえらせる』 - Google Developers DevFest Tokyo 2025
taniiicom
0
440
レガシーシステム刷新における TypeSpec スキーマ駆動開発のすゝめ
tsukuha
4
870
組織の“見えない壁”を越えよ!エンタープライズシフトに必須な3つのPMの「在り方」変革 #pmconf2025
masakazu178
1
1.1k
TypeScript 6.0で非推奨化されるオプションたち
uhyo
15
5.6k
研究開発部メンバーの働き⽅ / Sansan R&D Profile
sansan33
PRO
3
21k
段階的に進める、 挫折しない自宅サーバ入門
yu_kod
5
2k
Featured
See All Featured
Building Better People: How to give real-time feedback that sticks.
wjessup
370
20k
Making Projects Easy
brettharned
120
6.5k
Speed Design
sergeychernyshev
33
1.3k
The Myth of the Modular Monolith - Day 2 Keynote - Rails World 2024
eileencodes
26
3.2k
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
333
22k
Fireside Chat
paigeccino
41
3.7k
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
508
140k
Put a Button on it: Removing Barriers to Going Fast.
kastner
60
4.1k
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
9
1k
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
32
1.8k
Navigating Team Friction
lara
190
16k
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
31
9.8k
Transcript
Taking ML to production - A journey Arnon Rotem-Gal-Oz
Mental model of the probelm Admission Intubation Alert >6 hours
Challlenge 1 defining the problem
A Perfect Representation of the Machine Learning Cycle from start
to end | Image Source: MLOps (Published under Creative Commons Attribution 4.0 International Public License and used with attribution (“INNOQ”))
None
Challenge 2 – how we measure
Challenge 3 Data quality
None
Challenge 5 different types of data Model(s) text time series
categorical
Challenge 6 labeling Admission Intubation
Challenge 7 dealing with imballance
Challenge 8 Model experimentation cycle
Modeling
Challenge 9 – Overfit
None
Moving to production…
Challenge 10 – model degredation in production Theory Reality
Challenge11 – Is it really generalized?
Challenge 12 model validation and verification
The road to production…