& X-ray spectroscopy Aron Walsh*, Juarez L. F. Da Silva and Su-Huai Wei National Renewable Energy Laboratory, USA. C. Körber and A. Klein Darmstadt University of Technology, Germany. L. F. J. Piper, A. DeMasi and K. E. Smith Boston University, USA. G. Panaccionea and P. Torellib aLaboratorio TASC and bCNR-INFM, Italy. D.J. Payne, A. Bourlange and R. G. Egdell Oxford Chemistry Research Laboratory, UK.
(ITO). ★ Quoted band gap of 3.7 eV. ★ Up to 1022 cm-3 charge carriers. ★ Component in solar cells, displays, gas sensors. ★ BCC bixbyite structure ( space group: Ia/3, a = 10.12 Å )
direct absorption at ~ 3.7 eV.1 ★ Weak absorption 1 eV lower due to indirect transitions.1 ★ Consistent with XPS measurements.2,3 [1] R.L. Weiher & R.P. Ley, J. Appl. Phys. 37, 299 (1966). [2] P.A. Cox et al., J. Sol. Stat. Chem. 68, 340 (1987). [3] V. Christou et al., J. Appl. Phys. 88, 5180 (2000) ★ CBM at zone centre (magnetoresistance).1 CBM VBM
band bending.4 [4] A. Klein, Appl. Phys. Lett. 77, 2009 (2000). [5] P. Erhart et al., Phys. Rev. B 75, 153205 (2007). 3.7eV ! N 3.7eV Weak absorption below Eopt not a property of the bulk material? Bulk Depletion Layer
★ Weak absorption due to surface upward band bending.4 [4] A. Klein, Appl. Phys. Lett. 77, 2009 (2000). [5] P. Erhart et al., Phys. Rev. B 75, 153205 (2007). 3.7eV ! N 3.7eV Weak absorption below Eopt not a property of the bulk material? Bulk Depletion Layer
5 6 Al K! XPS OK XES Al K α hν = 1486.6 eV HXPS hν = 6000 eV nominally undoped 2% Sn-doped 10% Sn-doped 10% Sn-doped (a) (b) (c) x 20 x 10 XPS HXPS XES ★ Valence - conduction band separation of 2.9 eV in ‘undoped’ samples. ★ All three independent measurents show the same valence band onset. ★ n-type doping increases the separation due to further occupation of the conduction band.
!"#N H " ! ! $ ! % ! & (Ag) (Tg) (Tu) DFT Bandstructure ★ Direct band gap. ★ Flat valence band (ionic O 2p character). ★ Dispersive conduction band: (In / O s hybrid state). ★ VBM (g), CBM (g). Direct fundamental transitions are symmetry forbidden!
dense k-mesh sampling the full Brillouin zone. ★ Negligible absorption until 0.8 eV above the fundamental gap! ★ Correlates differences in electronic and optical measurements. Eopt ≠ Efundamental 6 8 Energy (eV) Eg 2 4 Absorption coefficient
In2O3 are inequivalent due to symmetry forbidden optical transitions. 2. We set an upper limit on the fundamental gap of 2.9 eV. (Eg = 2.9eV + ΔBM - ΔRN = 2.7 eV) 3. Revised band structure is crucial for measurement/ calculation of electronic properties: band offsets, defect levels, doping effects. 4. Forbidden direct band gaps are common in oxide systems possessing inversion symmetry: Cu2O, SnO2, TiO2. These systems are not indirect! (Indirect α1/2, Forbidden direct)
0.8eV ★ XPS: ‘undoped’ samples exhibit valence-conduction band separation of 2.9 eV. This represents an upper limit. Need to take into account conduction band occupation. Fundamental Eg = 2.9eV + ΔBM - ΔRN. Current estimation: Eg = 2.7eV Eg ! BM + ! - RN Eg ! BM + Eg VBM CBM