Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
在庫の最適化を実現する SaaSデータ基盤の裏側
Search
Atsushi Yokota
December 12, 2023
Programming
0
240
在庫の最適化を実現する SaaSデータ基盤の裏側
[大阪オフィス現地開催] 目指せ日本の西海岸!関西スタートアップの AWS 活用事例 登壇資料
Atsushi Yokota
December 12, 2023
Tweet
Share
More Decks by Atsushi Yokota
See All by Atsushi Yokota
Athenaで実現する時系列データのパフォーマンス改善
atsuyokota
0
210
Rust on Lambda 大きめCSV生成
atsuyokota
3
1.5k
Other Decks in Programming
See All in Programming
KIKI_MBSD Cybersecurity Challenges 2025
ikema
0
1.3k
Grafana:建立系統全知視角的捷徑
blueswen
0
330
副作用をどこに置くか問題:オブジェクト指向で整理する設計判断ツリー
koxya
1
610
今こそ知るべき耐量子計算機暗号(PQC)入門 / PQC: What You Need to Know Now
mackey0225
3
380
組織で育むオブザーバビリティ
ryota_hnk
0
180
AI によるインシデント初動調査の自動化を行う AI インシデントコマンダーを作った話
azukiazusa1
1
730
Lambda のコードストレージ容量に気をつけましょう
tattwan718
0
130
Honoを使ったリモートMCPサーバでAIツールとの連携を加速させる!
tosuri13
1
180
Oxlint JS plugins
kazupon
1
960
CSC307 Lecture 08
javiergs
PRO
0
670
Apache Iceberg V3 and migration to V3
tomtanaka
0
160
React 19でつくる「気持ちいいUI」- 楽観的UIのすすめ
himorishige
11
7.4k
Featured
See All Featured
Primal Persuasion: How to Engage the Brain for Learning That Lasts
tmiket
0
250
The Impact of AI in SEO - AI Overviews June 2024 Edition
aleyda
5
730
Stewardship and Sustainability of Urban and Community Forests
pwiseman
0
110
Joys of Absence: A Defence of Solitary Play
codingconduct
1
290
Claude Code どこまでも/ Claude Code Everywhere
nwiizo
61
52k
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
31
9.9k
AI Search: Where Are We & What Can We Do About It?
aleyda
0
6.9k
Side Projects
sachag
455
43k
Unlocking the hidden potential of vector embeddings in international SEO
frankvandijk
0
170
Collaborative Software Design: How to facilitate domain modelling decisions
baasie
0
140
Dealing with People You Can't Stand - Big Design 2015
cassininazir
367
27k
BBQ
matthewcrist
89
10k
Transcript
在庫の最適化を実現する SaaSデータ基盤の裏側 フルカイテン株式会社 横田
Atsushi Yokota バックエンドエンジニア 2 • 2020年10月よりフルカイテンに参画。 • FULL KAITEN V3の新規開発に携わり、Rustによる
GraphQLサーバーの構築やデータ基盤の構築を担当 • バックエンドグループマネージャー 自己紹介
3 在庫を利益に 変えるクラウド 今ある在庫で 売上・利益を最大化! 直感的に操作できる 使いやすいツール 運用定着まで 徹底サポート! EC・店舗・倉庫、
全ての在庫をAIで予測・分析し、 商品力をワンクリックで見える化。 とは
4 導入実績 ※一部抜粋/順不同 ※2023年10月時点
1. データ基盤の重要ポイント 2. リリース当初のアーキテクチャー 3. 刷新後のアーキテクチャー 4. 刷新の結果 5. 今後の展望
Agenda
6 フルカイテンにおけるデータ基盤の重要ポイント • 毎日同じ時刻に日次バッチが画面に反映されていること 在庫管理者 売価設定や在庫移 動の意思決定 早く売れそ うか 売れ残りそ
うか
7 フルカイテンにおけるデータ基盤の重要ポイント • アカウント毎のデータ量は、数万件〜数億件まで様々 • 大きなアカウントと小さなアカウントの間には1000倍以上の差 店舗 商品 ✕ データ量
8 リリース当初のデータ基盤概要(2021年5月〜)
リリース当初のデータ基盤概要(2021年5月〜) • リリース後、新規アカウントの追加で日次バッチが遅延
日次バッチが遅延した原因(1) Redshiftの集計処理でクエリ遅延が発生
11 日次バッチが遅延した原因(1) - Redshiftの集計処理でクエリ遅延が発生 • Redshiftは、大量データの集計処理が高速に実行可能 • ただし、日次バッチ処理が午前中に重なっていた • Concurrency
Scalingの書き込みは2021年当時は未対応(現在は 対応済み)。多くの中間テーブルを作成する集計処理のためクエリ遅 延が発生
日次バッチが遅延した原因(2) OpenSearchのデータ投入で遅延が発生
13 日次バッチが遅延した原因(2) - OpenSearchのデータ投入で遅延が発生 • 大量データのソート、フィルタリングは非常に高速 • ただし、インデックス作成に時間がかかり、大量データの投入が重な るとエラーが発生することがある •
結果、データの投入待ち時間が長くなり、日次バッチにかかる時間の 40%を占める状況になった
14 問題点のまとめ • 新規アカウントが増加するにつれて、リソースの奪い合いが発生 • 大きめのアカウント(約3.5億件)で画面反映まで、毎日15時間もかかる 状態 • データ量の小さなお客様もバッチ処理の反映が遅くなるようになっ た。。
15 刷新後のデータ基盤概要(2022年11月〜現在)
刷新後のデータ基盤概要(2022年11月〜現在)
データ基盤の刷新(1) - Redshiftの集計をPySpark on Glueに移行 PySpark on Glueによる 並列分散処理
18 Redshiftの集計をPySpark on Glueに移行した理由 • 複雑な集計処理が多く、中間テーブルの作成が必要であるため、メモ リ上での集計を行うPySpark on Glueの方が処理速度が速い •
サーバレスのGlueを使用することで、他のアカウントの影響を受 けることなく、並列分散処理が可能 • アカウント毎にワーカー数を指定することで、インフラコストを最適化 することが可能
データ基盤の刷新(2) - OpenSearchからAthenaへ移行 Athena経由によるデータ取 得
20 OpenSearchからAthenaへ移行した理由 • S3に格納されたデータを直接SQLでリクエストできるため、データ投入が 不要 • リクエスト毎にリソースが割り当てられるため、重いリクエストも並列で実行す ることが可能 • FederatedQueryを使用することで、Auroraを含む他のデータストアと結合
可能 書込 Parquet ファイル Glue Athena 取得 SQL Aurora
Athena導入の注意点 • ソートやフィルタリング処理は、OpenSearchの方が速いことが多い • 少量のデータに対してもレスポンス時間がかかる ◦ S3のExpress One Zoneで早くなるらしい トレードオフがあるので、
ユースケースに合わせた検討が必要
データ基盤の刷新(3) - オンデマンド処理の導入 オンデマンド処理の導入
23 オンデマンド処理の導入理由 • ユーザーからのリクエストに応じて、必要な集計処理を行うオンデマ ンド処理に対応 • 日次バッチを待たずにアドホックな分析が可能になり、ユーザー体験 が向上した • 参照頻度の低い日次集計をオンデマンド処理に移行
• Fargateの最大vCPU16個、メモリ128GiBに大幅拡張(2022年9 月)。これにより、ある程度のデータ量でもPandasで処理できるように なった。
24 データ基盤の刷新の結果 • 当初日次バッチに15時間かかっていたお客様も、3時間程度にま で短縮。 • サーバレスの有効活用により、スケーラビリティが向上。アカウント 数の増加に対応できる構成になった。
25 今後の展望 • アーキテクチャーの再編 ◦ オンデマンド処理への移行 ◦ Glueジョブの分割 • パフォーマンス・チューニング
◦ データ構造の見直し ◦ Glueのworkerの自動設定 • 機械学習のライフサイクル管理 • サービスとして横断的なデータ解析 プロダクトの状況は日々変化する データ基盤の作り替えも積極的に行う
エンジニア募集中! 一緒に世界の大量廃棄問題を解決しましょう! https://note.com/fullkaiten_re フルカイテン公式note