Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Ctrie Data Structure
Search
Aleksandar Prokopec
February 28, 2012
Programming
0
170
Ctrie Data Structure
The description of the Ctrie data structure from PPoPP 2012.
Aleksandar Prokopec
February 28, 2012
Tweet
Share
More Decks by Aleksandar Prokopec
See All by Aleksandar Prokopec
ScalaMeter in 2014
axel22
0
290
Reactive Collections
axel22
0
180
A Reactive 3D Game Engine in Scala
axel22
4
8.1k
ScalaBlitz
axel22
0
190
Work-stealing Tree Scheduler
axel22
1
60
ScalaMeter
axel22
0
120
Parallel Collections Overview
axel22
0
88
Introduction to Scala
axel22
2
280
Other Decks in Programming
See All in Programming
AWS Step Functions は CDK で書こう!
konokenj
5
930
Goで作るChrome Extensions / Fukuoka.go #21
n3xem
0
170
バッチを作らなきゃとなったときに考えること
irof
2
560
TCAを用いたAmebaのリアーキテクチャ
dazy
0
240
推しメソッドsource_locationのしくみを探る - はじめてRubyのコードを読んでみた
nobu09
2
370
技術を改善し続ける
gumioji
0
180
CIBMTR振り返り+敗北から学ぶコンペの取り組み方反省
takanao
1
230
Better Code Design in PHP
afilina
0
190
PRレビューのお供にDanger
stoticdev
1
250
ML.NETで始める機械学習
ymd65536
0
250
フロントエンドオブザーバビリティ on Google Cloud
yunosukey
0
110
自力でTTSモデルを作った話
zgock999
0
130
Featured
See All Featured
The Cost Of JavaScript in 2023
addyosmani
47
7.5k
A Philosophy of Restraint
colly
203
16k
Java REST API Framework Comparison - PWX 2021
mraible
29
8.4k
Learning to Love Humans: Emotional Interface Design
aarron
273
40k
How To Stay Up To Date on Web Technology
chriscoyier
790
250k
How GitHub (no longer) Works
holman
314
140k
Designing Dashboards & Data Visualisations in Web Apps
destraynor
231
53k
Helping Users Find Their Own Way: Creating Modern Search Experiences
danielanewman
29
2.5k
Facilitating Awesome Meetings
lara
53
6.3k
Large-scale JavaScript Application Architecture
addyosmani
511
110k
KATA
mclloyd
29
14k
Typedesign – Prime Four
hannesfritz
41
2.5k
Transcript
Concurrent Tries with Efficient Non-blocking Snapshots Aleksandar Prokopec Phil Bagwell
Martin Odersky École Polytechnique Fédérale de Lausanne Nathan Bronson Stanford
Motivation val numbers = getNumbers() // compute square roots numbers
foreach { entry => x = entry.root n = entry.number entry.root = 0.5 * (x + n / x) if (abs(entry.root - x) < eps) numbers.remove(entry) }
Hash Array Mapped Tries (HAMT)
Hash Array Mapped Tries (HAMT) 0 = 0000002
Hash Array Mapped Tries (HAMT) 0
Hash Array Mapped Tries (HAMT) 0 16 = 0100002
Hash Array Mapped Tries (HAMT) 0 16
Hash Array Mapped Tries (HAMT) 0 16 4 = 0001002
Hash Array Mapped Tries (HAMT) 16 0 4 = 0001002
Hash Array Mapped Tries (HAMT) 16 0 4
Hash Array Mapped Tries (HAMT) 16 0 4 12 =
0011002
Hash Array Mapped Tries (HAMT) 16 0 4 12 =
0011002
Hash Array Mapped Tries (HAMT) 16 0 4 12
Hash Array Mapped Tries (HAMT) 16 33 0 4 12
Hash Array Mapped Tries (HAMT) 16 33 0 4 12
48
Hash Array Mapped Tries (HAMT) 16 0 4 12 48
33 37
Hash Array Mapped Tries (HAMT) 16 4 12 48 33
37 0 3
Hash Array Mapped Tries (HAMT) 4 12 16 20 25
33 37 0 1 8 9 3 48 57
Immutable HAMT • used as immutable maps in functional languages
4 12 16 20 25 33 37 0 1 8 9 3
Immutable HAMT • updates rewrite path from root to leaf
4 12 16 20 25 33 37 0 1 8 9 3 4 12 8 9 11 insert(11)
Immutable HAMT • updates rewrite path from root to leaf
4 12 16 20 25 33 37 0 1 8 9 3 4 12 8 9 11 insert(11) efficient updates - logk (n)
Node compression 48 57 48 57 1 0 1 0
48 57 1 0 1 0 48 57 10 BITPOP(((1 << ((hc >> lev) & 1F)) – 1) & BMP)
Node compression 48 57 48 57 1 0 1 0
48 57 1 0 1 0 48 57 10 48 57
Ctrie Can mutable HAMT be modified to be thread-safe?
Ctrie insert 4 9 12 16 20 25 33 37
0 1 3 48 57 17 = 0100012
Ctrie insert 4 9 12 16 20 25 33 37
0 1 3 48 57 17 = 0100012 16 17 1) allocate
Ctrie insert 4 9 12 20 25 33 37 0
1 3 48 57 17 = 0100012 16 17 2) CAS
Ctrie insert 4 9 12 20 25 33 37 0
1 3 48 57 17 = 0100012 16 17
Ctrie insert 4 9 12 33 37 0 1 3
48 57 18 = 0100102 16 17 20 25
Ctrie insert 4 9 12 33 37 0 1 3
48 57 18 = 0100102 16 17 20 25 1) allocate 16 17 18
Ctrie insert 4 9 12 33 37 0 1 3
48 57 18 = 0100102 20 25 2) CAS 16 17 18
Ctrie insert 4 9 12 33 37 0 1 3
48 57 18 = 0100102 20 25 2) CAS 16 17 18 Unless…
Ctrie insert 4 9 12 33 37 0 1 3
48 57 18 = 0100102 16 17 20 25 T1-1) allocate 16 17 18 Unless… 28 = 0111002 T1 T2
Ctrie insert 4 9 12 0 1 3 18 =
0100102 16 17 20 25 T1-1) allocate 16 17 18 Unless… 28 = 0111002 T1 T2 20 25 28 T2-1) allocate
Ctrie insert 4 9 12 0 1 3 18 =
0100102 16 17 20 25 T1-1) allocate 16 17 18 28 = 0111002 T1 T2 20 25 28 T2-2) CAS
Ctrie insert 4 9 12 0 1 3 18 =
0100102 16 17 20 25 T1-2) CAS 16 17 18 28 = 0111002 T1 T2 20 25 28 T2-2) CAS
Ctrie insert 4 9 12 0 1 3 18 =
0100102 16 17 20 25 16 17 18 28 = 0111002 T1 T2 20 25 28 Lost insert!
Ctrie insert – 2nd attempt 4 9 12 0 1
3 16 17 20 25 Solution: I-nodes
Ctrie insert – 2nd attempt 4 9 12 0 1
3 16 17 20 25 18 = 0100102 28 = 0111002 T1 T2
Ctrie insert – 2nd attempt 4 9 12 0 1
3 16 17 T1 T2 20 25 18 = 0100102 28 = 0111002 16 17 18 20 25 28 T2-1) allocate T1-1) allocate
Ctrie insert – 2nd attempt 4 9 12 0 1
3 16 17 T1 T2 20 25 16 17 18 20 25 28 T2-2) CAS T1-2) CAS
Ctrie insert – 2nd attempt 4 9 12 0 1
3 16 17 18 20 25 28
Ctrie insert – 2nd attempt 4 9 12 0 1
3 16 17 18 20 25 28 Idea: once added to the Ctrie, I-nodes remain present.
Ctrie insert – 2nd attempt 4 9 12 0 1
3 16 17 18 20 25 28 Remove operation supported as well - details in the paper.
Ctrie size 4 9 12 0 1 3 16 17
18 20 25 28
Ctrie size 4 9 12 0 1 3 16 17
18 20 25 28 size = 0
Ctrie size 4 9 12 0 1 3 16 17
18 20 25 28 size = 0
Ctrie size 4 9 12 0 1 3 16 17
18 20 25 28 size = 0
Ctrie size 4 9 12 0 1 3 16 17
18 20 25 28 size = 0
Ctrie size 4 9 12 0 1 3 16 17
18 20 25 28 size = 1
Ctrie size 4 9 12 0 1 3 16 17
18 20 25 28 size = 2
Ctrie size 4 9 12 0 1 3 16 17
18 20 25 28 size = 3
Ctrie size 4 9 12 0 1 3 16 17
18 20 25 28 size = 5
Ctrie size 4 9 12 0 1 3 16 17
18 20 25 28 size = 5 actual size = 12
Ctrie size 4 9 12 0 1 3 16 17
18 20 25 28 size = 5 0 1 actual size = 12
Ctrie size 4 9 12 0 1 3 16 17
18 20 25 28 size = 5 0 1 CAS actual size = 11
Ctrie size 4 9 12 16 17 18 20 25
28 size = 5 0 1 actual size = 11
Ctrie size 4 9 12 16 17 18 20 25
28 size = 6 0 1 actual size = 11
Ctrie size 4 9 12 16 17 18 20 25
28 size = 6 0 1 actual size = 11 19
Ctrie size 4 9 12 16 17 18 20 25
28 size = 6 0 1 actual size = 11 16 17 18 19
Ctrie size 4 9 12 16 17 18 20 25
28 size = 6 0 1 actual size = 12 16 17 18 19 CAS
Ctrie size 4 9 12 20 25 28 size =
6 0 1 actual size = 12 16 17 18 19
Ctrie size 4 9 12 20 25 28 size =
6 0 1 actual size = 12 16 17 18 19
Ctrie size 4 9 12 20 25 28 size =
7 0 1 actual size = 9 16 17 18 19
Ctrie size 4 9 12 20 25 28 size =
8 0 1 actual size = 12 16 17 18 19
Ctrie size 4 9 12 20 25 28 size =
9 0 1 actual size = 12 16 17 18 19
Ctrie size 4 9 12 20 25 28 size =
10 0 1 actual size = 12 16 17 18 19
Ctrie size 4 9 12 20 25 28 size =
11 0 1 actual size = 12 16 17 18 19
Ctrie size 4 9 12 20 25 28 size =
12 0 1 actual size = 12 16 17 18 19
Ctrie size 4 9 12 20 25 28 size =
13 0 1 actual size = 12 16 17 18 19
Ctrie size 4 9 12 20 25 28 size =
13 0 1 actual size = 12 16 17 18 19 But the size was never 13!
Global state information 4 9 12 20 25 28 0
1 16 17 18 19 • size • find • filter • iterator
Global state information 4 9 12 20 25 28 0
1 16 17 18 19 • size • find • filter • iterator snapshot
Snapshot using locks 4 9 12 20 25 28 0
1 16 17 18 19
Snapshot using locks 4 9 12 20 25 28 0
1 16 17 18 19 • copy expensive
Snapshot using locks 4 9 12 20 25 28 0
1 16 17 18 19 • copy expensive • not lock-free
Snapshot using locks 4 9 12 20 25 28 0
1 16 17 18 19 • copy expensive • not lock-free • can insert or remove remain lock-free? 0 1 2 CAS
Snapshot using locks 4 9 12 20 25 28 0
1 16 17 18 19 • copy expensive • not lock-free • can insert or remove remain lock-free? 0 1 2 CAS
Snapshot using logs 4 9 12 20 25 28 0
1 16 17 18 19 • keep a linked list of previous values in each I-node
Snapshot using logs 4 9 12 20 25 28 0
1 16 17 18 19 0 1 2 • keep a linked list of previous values in each I-node
Snapshot using logs 4 9 12 20 25 28 0
1 16 17 18 19 • keep a linked list of previous values in each I-node • when is it safe to delete old entries? 0 1 2
Snapshot using immutability 4 9 12 20 25 28 0
1 16 17 18 19 root
Snapshot using immutability 4 9 12 20 25 28 0
1 16 17 18 19 #1 #1 #1 #1 #1 root
Snapshot using immutability 4 9 12 20 25 28 0
1 16 17 18 19 #1 #1 #1 #1 #1 snapshot! root
Snapshot using immutability 4 9 12 20 25 28 0
1 16 17 18 19 #1 #1 #1 #1 #1 snapshot! #2 root 1) create new I-node at #2
Snapshot using immutability 4 9 12 20 25 28 0
1 16 17 18 19 #1 #1 #1 #1 #1 snapshot! #2 root 2) set snapshot snapshot #1
Snapshot using immutability 4 9 12 20 25 28 0
1 16 17 18 19 #1 #1 #1 #1 #1 snapshot! #2 root 3) CAS root to new I-node snapshot #1
Snapshot using immutability 4 9 12 20 25 28 0
1 16 17 18 19 #1 #1 #1 #1 #1 subsequent insert #2 root snapshot #1 2
Snapshot using immutability 4 9 12 20 25 28 0
1 16 17 18 19 #1 #1 #1 #1 #1 subsequent insert #2 root snapshot #1 2 generation #2 - ok!
Snapshot using immutability 4 9 12 20 25 28 0
1 16 17 18 19 #1 #1 #1 #1 #1 subsequent insert #2 root snapshot #1 2 generation #1 not ok, too old!
Snapshot using immutability 4 9 12 20 25 28 0
1 16 17 18 19 #1 #1 #1 #1 #1 subsequent insert #2 root 1) create updated node at #2 snapshot #1 2 #2 #2
Snapshot using immutability 4 9 12 20 25 28 0
1 16 17 18 19 #1 #1 #1 #1 #1 subsequent insert #2 root 2) CAS to the updated node snapshot #1 2 #2 #2
Snapshot using immutability 4 9 12 20 25 28 0
1 16 17 18 19 #1 #1 #1 #1 #1 subsequent insert #2 root snapshot #1 2 #2 #2 #1 too old!
Snapshot using immutability 4 9 12 20 25 28 0
1 16 17 18 19 #1 #1 #1 #1 #1 subsequent insert #2 root snapshot #1 2 #2 #2 4 9 12 #2 1) create updated node at #2
Snapshot using immutability 4 9 12 20 25 28 0
1 16 17 18 19 #1 #1 #1 #1 #1 subsequent insert #2 root snapshot #1 2 #2 #2 4 9 12 #2 2) CAS
Snapshot using immutability 4 9 12 20 25 28 0
1 16 17 18 19 #1 #1 #1 #1 #1 subsequent insert #2 root snapshot #1 #2 #2 4 9 12 #2 0 1 2 finally, create a new leaf and CAS
Snapshot using immutability 4 9 12 20 25 28 0
1 16 17 18 19 #1 #1 #1 #1 #1 another insert #2 root snapshot #1 #2 #2 4 9 12 #2 0 1 2 3
Snapshot using immutability 4 9 12 20 25 28 0
1 16 17 18 19 #1 #1 #1 #1 #1 another insert #2 root snapshot #1 #2 #2 4 9 12 #2 0 1 2 0 1 2 3
Snapshot using immutability 4 9 12 20 25 28 0
1 16 17 18 19 #1 #1 #1 #1 #1 But... this won't really work... why? #2 root snapshot #1 #2 #2 4 9 12 #2 0 1 2 0 1 2 3
Snapshot using immutability 4 9 12 20 25 28 0
1 16 17 18 19 #1 #1 #1 #1 #1 #2 root snapshot #1 #2 #2 4 9 12 #2 0 1 2 0 1 2 3 T2: remove 19 16 17 18
Snapshot using immutability 4 9 12 20 25 28 0
1 16 17 18 19 #1 #1 #1 #1 #1 #2 root snapshot #1 #2 #2 4 9 12 #2 0 1 2 0 1 2 3 T2: remove 19 16 17 18 CAS
Snapshot using immutability 4 9 12 20 25 28 0
1 16 17 18 19 #1 #1 #1 #1 #1 #2 root snapshot #1 #2 #2 4 9 12 #2 0 1 2 0 1 2 3 T2: remove 19 16 17 18 CAS How to fail this last CAS?
Snapshot using immutability 4 9 12 20 25 28 0
1 16 17 18 19 #1 #1 #1 #1 #1 #2 root snapshot #1 #2 #2 4 9 12 #2 0 1 2 0 1 2 3 T2: remove 19 16 17 18 DCAS How to fail this last CAS? DCAS
Snapshot using immutability 4 9 12 20 25 28 0
1 16 17 18 19 #1 #1 #1 #1 #1 #2 root snapshot #1 #2 #2 4 9 12 #2 0 1 2 0 1 2 3 T2: remove 19 16 17 18 How to fail this last CAS? DCAS - software based DCAS
Snapshot using immutability 4 9 12 20 25 28 0
1 16 17 18 19 #1 #1 #1 #1 #1 #2 root snapshot #1 #2 #2 4 9 12 #2 0 1 2 0 1 2 3 T2: remove 19 16 17 18 How to fail this last CAS? DCAS - software based ...creates intermediate objects DCAS
GCAS - generation-compare-and-swap 4 9 12 20 25 28 0
1 16 17 18 19 #1 #1 #1 #1 #1 #2 root snapshot #1 #2 #2 4 9 12 #2 0 1 2 3 T2: remove 19 16 17 18 prev 1) set prev field
GCAS - generation-compare-and-swap 4 9 12 20 25 28 0
1 16 17 18 19 #1 #1 #1 #1 #1 #2 root snapshot #1 #2 #2 4 9 12 #2 0 1 2 3 T2: remove 19 16 17 18 prev 2) CAS
GCAS - generation-compare-and-swap 4 9 12 20 25 28 0
1 16 17 18 19 #1 #1 #1 #1 #1 #2 root snapshot #1 #2 #2 4 9 12 #2 0 1 2 3 T2: remove 19 16 17 18 prev 3) read root generation
GCAS - generation-compare-and-swap 4 9 12 20 25 28 0
1 16 17 18 19 #1 #1 #1 #1 #1 #2 root snapshot #1 #2 #2 4 9 12 #2 0 1 2 3 16 17 18 prev 4) if root generation changed CAS prev to FailedNode(prev) FN
GCAS - generation-compare-and-swap 4 9 12 20 25 28 0
1 16 17 18 19 #1 #1 #1 #1 #1 #2 root snapshot #1 #2 #2 4 9 12 #2 0 1 2 3 16 17 18 prev 4) if root generation changed CAS prev to FailedNode(prev) FN
GCAS - generation-compare-and-swap 4 9 12 20 25 28 0
1 16 17 18 19 #1 #1 #1 #1 #1 #2 root snapshot #1 #2 #2 4 9 12 #2 0 1 2 3 16 17 18 prev 5) CAS to previous value FN
GCAS - generation-compare-and-swap 4 9 12 20 25 28 0
1 16 17 18 19 #1 #1 #1 #1 #1 #2 root snapshot #1 #2 #2 4 9 12 #2 0 1 2 3 16 17 18 prev 4) if root generation unchanged CAS prev to null
GCAS - generation-compare-and-swap 4 9 12 20 25 28 0
1 16 17 18 19 #1 #1 #1 #1 #1 #2 root snapshot #1 #2 #2 4 9 12 #2 0 1 2 3 16 17 18 4) if root generation unchanged CAS prev to null
GCAS - generation-compare-and-swap 4 9 12 20 25 28 0
1 16 17 18 19 #1 #1 #1 #1 #1 #2 root snapshot #1 #2 #2 4 9 12 #2 0 1 2 3 1) Replace all CAS with GCAS 2) Replace all READ with GCAS_READ (which checks if prev field is null)
Snapshot-based iterator def iterator = if (isSnapshot) new Iterator(root) else
snapshot().iterator()
Snapshot-based size def size = { val sz = 0
val it = iterator while (it.hasNext) sz += 1 sz }
Snapshot-based size def size = { val sz = 0
val it = iterator while (it.hasNext) sz += 1 sz } Above is O(n). But, by caching size in nodes - amortized O(logk n)! (see source code)
Snapshot-based atomic clear def clear() = { val or =
READ(root) val nr = new INode(new Gen) if (!CAS(root, or, nr)) clear() } (roughly)
Evaluation - quad core i7
Evaluation – UltraSPARC T2
Evaluation – 4x 8-core i7
Evaluation – snapshot
Conclusion • snapshots are linearizable and lock-free • snapshots take
constant time • snapshots are horizontally scalable • snapshots add a non-significant overhead to the algorithm if they aren't used • the approach may be applicable to tree-based lock-free data-structures in general (intuition)
Thank you!