Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Ctrie Data Structure
Search
Sponsored
·
Your Podcast. Everywhere. Effortlessly.
Share. Educate. Inspire. Entertain. You do you. We'll handle the rest.
→
Aleksandar Prokopec
February 28, 2012
Programming
0
240
Ctrie Data Structure
The description of the Ctrie data structure from PPoPP 2012.
Aleksandar Prokopec
February 28, 2012
Tweet
Share
More Decks by Aleksandar Prokopec
See All by Aleksandar Prokopec
ScalaMeter in 2014
axel22
0
350
Reactive Collections
axel22
0
200
A Reactive 3D Game Engine in Scala
axel22
4
8.3k
ScalaBlitz
axel22
0
220
Work-stealing Tree Scheduler
axel22
1
85
ScalaMeter
axel22
0
150
Parallel Collections Overview
axel22
0
110
Introduction to Scala
axel22
2
310
Other Decks in Programming
See All in Programming
Lambda のコードストレージ容量に気をつけましょう
tattwan718
0
120
AIによる高速開発をどう制御するか? ガードレール設置で開発速度と品質を両立させたチームの事例
tonkotsuboy_com
7
2.2k
OCaml 5でモダンな並列プログラミングを Enjoyしよう!
haochenx
0
140
なぜSQLはAIぽく見えるのか/why does SQL look AI like
florets1
0
450
登壇資料を作る時に意識していること #登壇資料_findy
konifar
4
1k
CSC307 Lecture 08
javiergs
PRO
0
670
AIフル活用時代だからこそ学んでおきたい働き方の心得
shinoyu
0
130
コマンドとリード間の連携に対する脅威分析フレームワーク
pandayumi
1
450
カスタマーサクセス業務を変革したヘルススコアの実現と学び
_hummer0724
0
680
0→1 フロントエンド開発 Tips🚀 #レバテックMeetup
bengo4com
0
560
humanlayerのブログから学ぶ、良いCLAUDE.mdの書き方
tsukamoto1783
0
190
AgentCoreとHuman in the Loop
har1101
5
230
Featured
See All Featured
Principles of Awesome APIs and How to Build Them.
keavy
128
17k
The agentic SEO stack - context over prompts
schlessera
0
630
Jamie Indigo - Trashchat’s Guide to Black Boxes: Technical SEO Tactics for LLMs
techseoconnect
PRO
0
57
Winning Ecommerce Organic Search in an AI Era - #searchnstuff2025
aleyda
0
1.9k
Jess Joyce - The Pitfalls of Following Frameworks
techseoconnect
PRO
1
64
brightonSEO & MeasureFest 2025 - Christian Goodrich - Winning strategies for Black Friday CRO & PPC
cargoodrich
3
98
Utilizing Notion as your number one productivity tool
mfonobong
3
220
Agile Actions for Facilitating Distributed Teams - ADO2019
mkilby
0
110
Practical Orchestrator
shlominoach
191
11k
Taking LLMs out of the black box: A practical guide to human-in-the-loop distillation
inesmontani
PRO
3
2k
Darren the Foodie - Storyboard
khoart
PRO
2
2.4k
SEO in 2025: How to Prepare for the Future of Search
ipullrank
3
3.3k
Transcript
Concurrent Tries with Efficient Non-blocking Snapshots Aleksandar Prokopec Phil Bagwell
Martin Odersky École Polytechnique Fédérale de Lausanne Nathan Bronson Stanford
Motivation val numbers = getNumbers() // compute square roots numbers
foreach { entry => x = entry.root n = entry.number entry.root = 0.5 * (x + n / x) if (abs(entry.root - x) < eps) numbers.remove(entry) }
Hash Array Mapped Tries (HAMT)
Hash Array Mapped Tries (HAMT) 0 = 0000002
Hash Array Mapped Tries (HAMT) 0
Hash Array Mapped Tries (HAMT) 0 16 = 0100002
Hash Array Mapped Tries (HAMT) 0 16
Hash Array Mapped Tries (HAMT) 0 16 4 = 0001002
Hash Array Mapped Tries (HAMT) 16 0 4 = 0001002
Hash Array Mapped Tries (HAMT) 16 0 4
Hash Array Mapped Tries (HAMT) 16 0 4 12 =
0011002
Hash Array Mapped Tries (HAMT) 16 0 4 12 =
0011002
Hash Array Mapped Tries (HAMT) 16 0 4 12
Hash Array Mapped Tries (HAMT) 16 33 0 4 12
Hash Array Mapped Tries (HAMT) 16 33 0 4 12
48
Hash Array Mapped Tries (HAMT) 16 0 4 12 48
33 37
Hash Array Mapped Tries (HAMT) 16 4 12 48 33
37 0 3
Hash Array Mapped Tries (HAMT) 4 12 16 20 25
33 37 0 1 8 9 3 48 57
Immutable HAMT • used as immutable maps in functional languages
4 12 16 20 25 33 37 0 1 8 9 3
Immutable HAMT • updates rewrite path from root to leaf
4 12 16 20 25 33 37 0 1 8 9 3 4 12 8 9 11 insert(11)
Immutable HAMT • updates rewrite path from root to leaf
4 12 16 20 25 33 37 0 1 8 9 3 4 12 8 9 11 insert(11) efficient updates - logk (n)
Node compression 48 57 48 57 1 0 1 0
48 57 1 0 1 0 48 57 10 BITPOP(((1 << ((hc >> lev) & 1F)) – 1) & BMP)
Node compression 48 57 48 57 1 0 1 0
48 57 1 0 1 0 48 57 10 48 57
Ctrie Can mutable HAMT be modified to be thread-safe?
Ctrie insert 4 9 12 16 20 25 33 37
0 1 3 48 57 17 = 0100012
Ctrie insert 4 9 12 16 20 25 33 37
0 1 3 48 57 17 = 0100012 16 17 1) allocate
Ctrie insert 4 9 12 20 25 33 37 0
1 3 48 57 17 = 0100012 16 17 2) CAS
Ctrie insert 4 9 12 20 25 33 37 0
1 3 48 57 17 = 0100012 16 17
Ctrie insert 4 9 12 33 37 0 1 3
48 57 18 = 0100102 16 17 20 25
Ctrie insert 4 9 12 33 37 0 1 3
48 57 18 = 0100102 16 17 20 25 1) allocate 16 17 18
Ctrie insert 4 9 12 33 37 0 1 3
48 57 18 = 0100102 20 25 2) CAS 16 17 18
Ctrie insert 4 9 12 33 37 0 1 3
48 57 18 = 0100102 20 25 2) CAS 16 17 18 Unless…
Ctrie insert 4 9 12 33 37 0 1 3
48 57 18 = 0100102 16 17 20 25 T1-1) allocate 16 17 18 Unless… 28 = 0111002 T1 T2
Ctrie insert 4 9 12 0 1 3 18 =
0100102 16 17 20 25 T1-1) allocate 16 17 18 Unless… 28 = 0111002 T1 T2 20 25 28 T2-1) allocate
Ctrie insert 4 9 12 0 1 3 18 =
0100102 16 17 20 25 T1-1) allocate 16 17 18 28 = 0111002 T1 T2 20 25 28 T2-2) CAS
Ctrie insert 4 9 12 0 1 3 18 =
0100102 16 17 20 25 T1-2) CAS 16 17 18 28 = 0111002 T1 T2 20 25 28 T2-2) CAS
Ctrie insert 4 9 12 0 1 3 18 =
0100102 16 17 20 25 16 17 18 28 = 0111002 T1 T2 20 25 28 Lost insert!
Ctrie insert – 2nd attempt 4 9 12 0 1
3 16 17 20 25 Solution: I-nodes
Ctrie insert – 2nd attempt 4 9 12 0 1
3 16 17 20 25 18 = 0100102 28 = 0111002 T1 T2
Ctrie insert – 2nd attempt 4 9 12 0 1
3 16 17 T1 T2 20 25 18 = 0100102 28 = 0111002 16 17 18 20 25 28 T2-1) allocate T1-1) allocate
Ctrie insert – 2nd attempt 4 9 12 0 1
3 16 17 T1 T2 20 25 16 17 18 20 25 28 T2-2) CAS T1-2) CAS
Ctrie insert – 2nd attempt 4 9 12 0 1
3 16 17 18 20 25 28
Ctrie insert – 2nd attempt 4 9 12 0 1
3 16 17 18 20 25 28 Idea: once added to the Ctrie, I-nodes remain present.
Ctrie insert – 2nd attempt 4 9 12 0 1
3 16 17 18 20 25 28 Remove operation supported as well - details in the paper.
Ctrie size 4 9 12 0 1 3 16 17
18 20 25 28
Ctrie size 4 9 12 0 1 3 16 17
18 20 25 28 size = 0
Ctrie size 4 9 12 0 1 3 16 17
18 20 25 28 size = 0
Ctrie size 4 9 12 0 1 3 16 17
18 20 25 28 size = 0
Ctrie size 4 9 12 0 1 3 16 17
18 20 25 28 size = 0
Ctrie size 4 9 12 0 1 3 16 17
18 20 25 28 size = 1
Ctrie size 4 9 12 0 1 3 16 17
18 20 25 28 size = 2
Ctrie size 4 9 12 0 1 3 16 17
18 20 25 28 size = 3
Ctrie size 4 9 12 0 1 3 16 17
18 20 25 28 size = 5
Ctrie size 4 9 12 0 1 3 16 17
18 20 25 28 size = 5 actual size = 12
Ctrie size 4 9 12 0 1 3 16 17
18 20 25 28 size = 5 0 1 actual size = 12
Ctrie size 4 9 12 0 1 3 16 17
18 20 25 28 size = 5 0 1 CAS actual size = 11
Ctrie size 4 9 12 16 17 18 20 25
28 size = 5 0 1 actual size = 11
Ctrie size 4 9 12 16 17 18 20 25
28 size = 6 0 1 actual size = 11
Ctrie size 4 9 12 16 17 18 20 25
28 size = 6 0 1 actual size = 11 19
Ctrie size 4 9 12 16 17 18 20 25
28 size = 6 0 1 actual size = 11 16 17 18 19
Ctrie size 4 9 12 16 17 18 20 25
28 size = 6 0 1 actual size = 12 16 17 18 19 CAS
Ctrie size 4 9 12 20 25 28 size =
6 0 1 actual size = 12 16 17 18 19
Ctrie size 4 9 12 20 25 28 size =
6 0 1 actual size = 12 16 17 18 19
Ctrie size 4 9 12 20 25 28 size =
7 0 1 actual size = 9 16 17 18 19
Ctrie size 4 9 12 20 25 28 size =
8 0 1 actual size = 12 16 17 18 19
Ctrie size 4 9 12 20 25 28 size =
9 0 1 actual size = 12 16 17 18 19
Ctrie size 4 9 12 20 25 28 size =
10 0 1 actual size = 12 16 17 18 19
Ctrie size 4 9 12 20 25 28 size =
11 0 1 actual size = 12 16 17 18 19
Ctrie size 4 9 12 20 25 28 size =
12 0 1 actual size = 12 16 17 18 19
Ctrie size 4 9 12 20 25 28 size =
13 0 1 actual size = 12 16 17 18 19
Ctrie size 4 9 12 20 25 28 size =
13 0 1 actual size = 12 16 17 18 19 But the size was never 13!
Global state information 4 9 12 20 25 28 0
1 16 17 18 19 • size • find • filter • iterator
Global state information 4 9 12 20 25 28 0
1 16 17 18 19 • size • find • filter • iterator snapshot
Snapshot using locks 4 9 12 20 25 28 0
1 16 17 18 19
Snapshot using locks 4 9 12 20 25 28 0
1 16 17 18 19 • copy expensive
Snapshot using locks 4 9 12 20 25 28 0
1 16 17 18 19 • copy expensive • not lock-free
Snapshot using locks 4 9 12 20 25 28 0
1 16 17 18 19 • copy expensive • not lock-free • can insert or remove remain lock-free? 0 1 2 CAS
Snapshot using locks 4 9 12 20 25 28 0
1 16 17 18 19 • copy expensive • not lock-free • can insert or remove remain lock-free? 0 1 2 CAS
Snapshot using logs 4 9 12 20 25 28 0
1 16 17 18 19 • keep a linked list of previous values in each I-node
Snapshot using logs 4 9 12 20 25 28 0
1 16 17 18 19 0 1 2 • keep a linked list of previous values in each I-node
Snapshot using logs 4 9 12 20 25 28 0
1 16 17 18 19 • keep a linked list of previous values in each I-node • when is it safe to delete old entries? 0 1 2
Snapshot using immutability 4 9 12 20 25 28 0
1 16 17 18 19 root
Snapshot using immutability 4 9 12 20 25 28 0
1 16 17 18 19 #1 #1 #1 #1 #1 root
Snapshot using immutability 4 9 12 20 25 28 0
1 16 17 18 19 #1 #1 #1 #1 #1 snapshot! root
Snapshot using immutability 4 9 12 20 25 28 0
1 16 17 18 19 #1 #1 #1 #1 #1 snapshot! #2 root 1) create new I-node at #2
Snapshot using immutability 4 9 12 20 25 28 0
1 16 17 18 19 #1 #1 #1 #1 #1 snapshot! #2 root 2) set snapshot snapshot #1
Snapshot using immutability 4 9 12 20 25 28 0
1 16 17 18 19 #1 #1 #1 #1 #1 snapshot! #2 root 3) CAS root to new I-node snapshot #1
Snapshot using immutability 4 9 12 20 25 28 0
1 16 17 18 19 #1 #1 #1 #1 #1 subsequent insert #2 root snapshot #1 2
Snapshot using immutability 4 9 12 20 25 28 0
1 16 17 18 19 #1 #1 #1 #1 #1 subsequent insert #2 root snapshot #1 2 generation #2 - ok!
Snapshot using immutability 4 9 12 20 25 28 0
1 16 17 18 19 #1 #1 #1 #1 #1 subsequent insert #2 root snapshot #1 2 generation #1 not ok, too old!
Snapshot using immutability 4 9 12 20 25 28 0
1 16 17 18 19 #1 #1 #1 #1 #1 subsequent insert #2 root 1) create updated node at #2 snapshot #1 2 #2 #2
Snapshot using immutability 4 9 12 20 25 28 0
1 16 17 18 19 #1 #1 #1 #1 #1 subsequent insert #2 root 2) CAS to the updated node snapshot #1 2 #2 #2
Snapshot using immutability 4 9 12 20 25 28 0
1 16 17 18 19 #1 #1 #1 #1 #1 subsequent insert #2 root snapshot #1 2 #2 #2 #1 too old!
Snapshot using immutability 4 9 12 20 25 28 0
1 16 17 18 19 #1 #1 #1 #1 #1 subsequent insert #2 root snapshot #1 2 #2 #2 4 9 12 #2 1) create updated node at #2
Snapshot using immutability 4 9 12 20 25 28 0
1 16 17 18 19 #1 #1 #1 #1 #1 subsequent insert #2 root snapshot #1 2 #2 #2 4 9 12 #2 2) CAS
Snapshot using immutability 4 9 12 20 25 28 0
1 16 17 18 19 #1 #1 #1 #1 #1 subsequent insert #2 root snapshot #1 #2 #2 4 9 12 #2 0 1 2 finally, create a new leaf and CAS
Snapshot using immutability 4 9 12 20 25 28 0
1 16 17 18 19 #1 #1 #1 #1 #1 another insert #2 root snapshot #1 #2 #2 4 9 12 #2 0 1 2 3
Snapshot using immutability 4 9 12 20 25 28 0
1 16 17 18 19 #1 #1 #1 #1 #1 another insert #2 root snapshot #1 #2 #2 4 9 12 #2 0 1 2 0 1 2 3
Snapshot using immutability 4 9 12 20 25 28 0
1 16 17 18 19 #1 #1 #1 #1 #1 But... this won't really work... why? #2 root snapshot #1 #2 #2 4 9 12 #2 0 1 2 0 1 2 3
Snapshot using immutability 4 9 12 20 25 28 0
1 16 17 18 19 #1 #1 #1 #1 #1 #2 root snapshot #1 #2 #2 4 9 12 #2 0 1 2 0 1 2 3 T2: remove 19 16 17 18
Snapshot using immutability 4 9 12 20 25 28 0
1 16 17 18 19 #1 #1 #1 #1 #1 #2 root snapshot #1 #2 #2 4 9 12 #2 0 1 2 0 1 2 3 T2: remove 19 16 17 18 CAS
Snapshot using immutability 4 9 12 20 25 28 0
1 16 17 18 19 #1 #1 #1 #1 #1 #2 root snapshot #1 #2 #2 4 9 12 #2 0 1 2 0 1 2 3 T2: remove 19 16 17 18 CAS How to fail this last CAS?
Snapshot using immutability 4 9 12 20 25 28 0
1 16 17 18 19 #1 #1 #1 #1 #1 #2 root snapshot #1 #2 #2 4 9 12 #2 0 1 2 0 1 2 3 T2: remove 19 16 17 18 DCAS How to fail this last CAS? DCAS
Snapshot using immutability 4 9 12 20 25 28 0
1 16 17 18 19 #1 #1 #1 #1 #1 #2 root snapshot #1 #2 #2 4 9 12 #2 0 1 2 0 1 2 3 T2: remove 19 16 17 18 How to fail this last CAS? DCAS - software based DCAS
Snapshot using immutability 4 9 12 20 25 28 0
1 16 17 18 19 #1 #1 #1 #1 #1 #2 root snapshot #1 #2 #2 4 9 12 #2 0 1 2 0 1 2 3 T2: remove 19 16 17 18 How to fail this last CAS? DCAS - software based ...creates intermediate objects DCAS
GCAS - generation-compare-and-swap 4 9 12 20 25 28 0
1 16 17 18 19 #1 #1 #1 #1 #1 #2 root snapshot #1 #2 #2 4 9 12 #2 0 1 2 3 T2: remove 19 16 17 18 prev 1) set prev field
GCAS - generation-compare-and-swap 4 9 12 20 25 28 0
1 16 17 18 19 #1 #1 #1 #1 #1 #2 root snapshot #1 #2 #2 4 9 12 #2 0 1 2 3 T2: remove 19 16 17 18 prev 2) CAS
GCAS - generation-compare-and-swap 4 9 12 20 25 28 0
1 16 17 18 19 #1 #1 #1 #1 #1 #2 root snapshot #1 #2 #2 4 9 12 #2 0 1 2 3 T2: remove 19 16 17 18 prev 3) read root generation
GCAS - generation-compare-and-swap 4 9 12 20 25 28 0
1 16 17 18 19 #1 #1 #1 #1 #1 #2 root snapshot #1 #2 #2 4 9 12 #2 0 1 2 3 16 17 18 prev 4) if root generation changed CAS prev to FailedNode(prev) FN
GCAS - generation-compare-and-swap 4 9 12 20 25 28 0
1 16 17 18 19 #1 #1 #1 #1 #1 #2 root snapshot #1 #2 #2 4 9 12 #2 0 1 2 3 16 17 18 prev 4) if root generation changed CAS prev to FailedNode(prev) FN
GCAS - generation-compare-and-swap 4 9 12 20 25 28 0
1 16 17 18 19 #1 #1 #1 #1 #1 #2 root snapshot #1 #2 #2 4 9 12 #2 0 1 2 3 16 17 18 prev 5) CAS to previous value FN
GCAS - generation-compare-and-swap 4 9 12 20 25 28 0
1 16 17 18 19 #1 #1 #1 #1 #1 #2 root snapshot #1 #2 #2 4 9 12 #2 0 1 2 3 16 17 18 prev 4) if root generation unchanged CAS prev to null
GCAS - generation-compare-and-swap 4 9 12 20 25 28 0
1 16 17 18 19 #1 #1 #1 #1 #1 #2 root snapshot #1 #2 #2 4 9 12 #2 0 1 2 3 16 17 18 4) if root generation unchanged CAS prev to null
GCAS - generation-compare-and-swap 4 9 12 20 25 28 0
1 16 17 18 19 #1 #1 #1 #1 #1 #2 root snapshot #1 #2 #2 4 9 12 #2 0 1 2 3 1) Replace all CAS with GCAS 2) Replace all READ with GCAS_READ (which checks if prev field is null)
Snapshot-based iterator def iterator = if (isSnapshot) new Iterator(root) else
snapshot().iterator()
Snapshot-based size def size = { val sz = 0
val it = iterator while (it.hasNext) sz += 1 sz }
Snapshot-based size def size = { val sz = 0
val it = iterator while (it.hasNext) sz += 1 sz } Above is O(n). But, by caching size in nodes - amortized O(logk n)! (see source code)
Snapshot-based atomic clear def clear() = { val or =
READ(root) val nr = new INode(new Gen) if (!CAS(root, or, nr)) clear() } (roughly)
Evaluation - quad core i7
Evaluation – UltraSPARC T2
Evaluation – 4x 8-core i7
Evaluation – snapshot
Conclusion • snapshots are linearizable and lock-free • snapshots take
constant time • snapshots are horizontally scalable • snapshots add a non-significant overhead to the algorithm if they aren't used • the approach may be applicable to tree-based lock-free data-structures in general (intuition)
Thank you!