Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Ctrie Data Structure
Search
Sponsored
·
SiteGround - Reliable hosting with speed, security, and support you can count on.
→
Aleksandar Prokopec
February 28, 2012
Programming
0
240
Ctrie Data Structure
The description of the Ctrie data structure from PPoPP 2012.
Aleksandar Prokopec
February 28, 2012
Tweet
Share
More Decks by Aleksandar Prokopec
See All by Aleksandar Prokopec
ScalaMeter in 2014
axel22
0
350
Reactive Collections
axel22
0
200
A Reactive 3D Game Engine in Scala
axel22
4
8.3k
ScalaBlitz
axel22
0
220
Work-stealing Tree Scheduler
axel22
1
85
ScalaMeter
axel22
0
150
Parallel Collections Overview
axel22
0
110
Introduction to Scala
axel22
2
310
Other Decks in Programming
See All in Programming
AIによるイベントストーミング図からのコード生成 / AI-powered code generation from Event Storming diagrams
nrslib
2
1.8k
Grafana:建立系統全知視角的捷徑
blueswen
0
330
20260127_試行錯誤の結晶を1冊に。著者が解説 先輩データサイエンティストからの指南書 / author's_commentary_ds_instructions_guide
nash_efp
0
910
Amazon Bedrockを活用したRAGの品質管理パイプライン構築
tosuri13
4
250
The Past, Present, and Future of Enterprise Java
ivargrimstad
0
500
Fragmented Architectures
denyspoltorak
0
150
Spinner 軸ズレ現象を調べたらレンダリング深淵に飲まれた #レバテックMeetup
bengo4com
1
230
2026年 エンジニアリング自己学習法
yumechi
0
130
コマンドとリード間の連携に対する脅威分析フレームワーク
pandayumi
1
450
360° Signals in Angular: Signal Forms with SignalStore & Resources @ngLondon 01/2026
manfredsteyer
PRO
0
120
フロントエンド開発の勘所 -複数事業を経験して見えた判断軸の違い-
heimusu
7
2.8k
疑似コードによるプロンプト記述、どのくらい正確に実行される?
kokuyouwind
0
380
Featured
See All Featured
Building Adaptive Systems
keathley
44
2.9k
The agentic SEO stack - context over prompts
schlessera
0
630
Leveraging Curiosity to Care for An Aging Population
cassininazir
1
160
Sam Torres - BigQuery for SEOs
techseoconnect
PRO
0
180
Crafting Experiences
bethany
1
46
Marketing Yourself as an Engineer | Alaka | Gurzu
gurzu
0
130
コードの90%をAIが書く世界で何が待っているのか / What awaits us in a world where 90% of the code is written by AI
rkaga
60
42k
SEOcharity - Dark patterns in SEO and UX: How to avoid them and build a more ethical web
sarafernandez
0
110
Helping Users Find Their Own Way: Creating Modern Search Experiences
danielanewman
31
3.1k
Producing Creativity
orderedlist
PRO
348
40k
Faster Mobile Websites
deanohume
310
31k
Dealing with People You Can't Stand - Big Design 2015
cassininazir
367
27k
Transcript
Concurrent Tries with Efficient Non-blocking Snapshots Aleksandar Prokopec Phil Bagwell
Martin Odersky École Polytechnique Fédérale de Lausanne Nathan Bronson Stanford
Motivation val numbers = getNumbers() // compute square roots numbers
foreach { entry => x = entry.root n = entry.number entry.root = 0.5 * (x + n / x) if (abs(entry.root - x) < eps) numbers.remove(entry) }
Hash Array Mapped Tries (HAMT)
Hash Array Mapped Tries (HAMT) 0 = 0000002
Hash Array Mapped Tries (HAMT) 0
Hash Array Mapped Tries (HAMT) 0 16 = 0100002
Hash Array Mapped Tries (HAMT) 0 16
Hash Array Mapped Tries (HAMT) 0 16 4 = 0001002
Hash Array Mapped Tries (HAMT) 16 0 4 = 0001002
Hash Array Mapped Tries (HAMT) 16 0 4
Hash Array Mapped Tries (HAMT) 16 0 4 12 =
0011002
Hash Array Mapped Tries (HAMT) 16 0 4 12 =
0011002
Hash Array Mapped Tries (HAMT) 16 0 4 12
Hash Array Mapped Tries (HAMT) 16 33 0 4 12
Hash Array Mapped Tries (HAMT) 16 33 0 4 12
48
Hash Array Mapped Tries (HAMT) 16 0 4 12 48
33 37
Hash Array Mapped Tries (HAMT) 16 4 12 48 33
37 0 3
Hash Array Mapped Tries (HAMT) 4 12 16 20 25
33 37 0 1 8 9 3 48 57
Immutable HAMT • used as immutable maps in functional languages
4 12 16 20 25 33 37 0 1 8 9 3
Immutable HAMT • updates rewrite path from root to leaf
4 12 16 20 25 33 37 0 1 8 9 3 4 12 8 9 11 insert(11)
Immutable HAMT • updates rewrite path from root to leaf
4 12 16 20 25 33 37 0 1 8 9 3 4 12 8 9 11 insert(11) efficient updates - logk (n)
Node compression 48 57 48 57 1 0 1 0
48 57 1 0 1 0 48 57 10 BITPOP(((1 << ((hc >> lev) & 1F)) – 1) & BMP)
Node compression 48 57 48 57 1 0 1 0
48 57 1 0 1 0 48 57 10 48 57
Ctrie Can mutable HAMT be modified to be thread-safe?
Ctrie insert 4 9 12 16 20 25 33 37
0 1 3 48 57 17 = 0100012
Ctrie insert 4 9 12 16 20 25 33 37
0 1 3 48 57 17 = 0100012 16 17 1) allocate
Ctrie insert 4 9 12 20 25 33 37 0
1 3 48 57 17 = 0100012 16 17 2) CAS
Ctrie insert 4 9 12 20 25 33 37 0
1 3 48 57 17 = 0100012 16 17
Ctrie insert 4 9 12 33 37 0 1 3
48 57 18 = 0100102 16 17 20 25
Ctrie insert 4 9 12 33 37 0 1 3
48 57 18 = 0100102 16 17 20 25 1) allocate 16 17 18
Ctrie insert 4 9 12 33 37 0 1 3
48 57 18 = 0100102 20 25 2) CAS 16 17 18
Ctrie insert 4 9 12 33 37 0 1 3
48 57 18 = 0100102 20 25 2) CAS 16 17 18 Unless…
Ctrie insert 4 9 12 33 37 0 1 3
48 57 18 = 0100102 16 17 20 25 T1-1) allocate 16 17 18 Unless… 28 = 0111002 T1 T2
Ctrie insert 4 9 12 0 1 3 18 =
0100102 16 17 20 25 T1-1) allocate 16 17 18 Unless… 28 = 0111002 T1 T2 20 25 28 T2-1) allocate
Ctrie insert 4 9 12 0 1 3 18 =
0100102 16 17 20 25 T1-1) allocate 16 17 18 28 = 0111002 T1 T2 20 25 28 T2-2) CAS
Ctrie insert 4 9 12 0 1 3 18 =
0100102 16 17 20 25 T1-2) CAS 16 17 18 28 = 0111002 T1 T2 20 25 28 T2-2) CAS
Ctrie insert 4 9 12 0 1 3 18 =
0100102 16 17 20 25 16 17 18 28 = 0111002 T1 T2 20 25 28 Lost insert!
Ctrie insert – 2nd attempt 4 9 12 0 1
3 16 17 20 25 Solution: I-nodes
Ctrie insert – 2nd attempt 4 9 12 0 1
3 16 17 20 25 18 = 0100102 28 = 0111002 T1 T2
Ctrie insert – 2nd attempt 4 9 12 0 1
3 16 17 T1 T2 20 25 18 = 0100102 28 = 0111002 16 17 18 20 25 28 T2-1) allocate T1-1) allocate
Ctrie insert – 2nd attempt 4 9 12 0 1
3 16 17 T1 T2 20 25 16 17 18 20 25 28 T2-2) CAS T1-2) CAS
Ctrie insert – 2nd attempt 4 9 12 0 1
3 16 17 18 20 25 28
Ctrie insert – 2nd attempt 4 9 12 0 1
3 16 17 18 20 25 28 Idea: once added to the Ctrie, I-nodes remain present.
Ctrie insert – 2nd attempt 4 9 12 0 1
3 16 17 18 20 25 28 Remove operation supported as well - details in the paper.
Ctrie size 4 9 12 0 1 3 16 17
18 20 25 28
Ctrie size 4 9 12 0 1 3 16 17
18 20 25 28 size = 0
Ctrie size 4 9 12 0 1 3 16 17
18 20 25 28 size = 0
Ctrie size 4 9 12 0 1 3 16 17
18 20 25 28 size = 0
Ctrie size 4 9 12 0 1 3 16 17
18 20 25 28 size = 0
Ctrie size 4 9 12 0 1 3 16 17
18 20 25 28 size = 1
Ctrie size 4 9 12 0 1 3 16 17
18 20 25 28 size = 2
Ctrie size 4 9 12 0 1 3 16 17
18 20 25 28 size = 3
Ctrie size 4 9 12 0 1 3 16 17
18 20 25 28 size = 5
Ctrie size 4 9 12 0 1 3 16 17
18 20 25 28 size = 5 actual size = 12
Ctrie size 4 9 12 0 1 3 16 17
18 20 25 28 size = 5 0 1 actual size = 12
Ctrie size 4 9 12 0 1 3 16 17
18 20 25 28 size = 5 0 1 CAS actual size = 11
Ctrie size 4 9 12 16 17 18 20 25
28 size = 5 0 1 actual size = 11
Ctrie size 4 9 12 16 17 18 20 25
28 size = 6 0 1 actual size = 11
Ctrie size 4 9 12 16 17 18 20 25
28 size = 6 0 1 actual size = 11 19
Ctrie size 4 9 12 16 17 18 20 25
28 size = 6 0 1 actual size = 11 16 17 18 19
Ctrie size 4 9 12 16 17 18 20 25
28 size = 6 0 1 actual size = 12 16 17 18 19 CAS
Ctrie size 4 9 12 20 25 28 size =
6 0 1 actual size = 12 16 17 18 19
Ctrie size 4 9 12 20 25 28 size =
6 0 1 actual size = 12 16 17 18 19
Ctrie size 4 9 12 20 25 28 size =
7 0 1 actual size = 9 16 17 18 19
Ctrie size 4 9 12 20 25 28 size =
8 0 1 actual size = 12 16 17 18 19
Ctrie size 4 9 12 20 25 28 size =
9 0 1 actual size = 12 16 17 18 19
Ctrie size 4 9 12 20 25 28 size =
10 0 1 actual size = 12 16 17 18 19
Ctrie size 4 9 12 20 25 28 size =
11 0 1 actual size = 12 16 17 18 19
Ctrie size 4 9 12 20 25 28 size =
12 0 1 actual size = 12 16 17 18 19
Ctrie size 4 9 12 20 25 28 size =
13 0 1 actual size = 12 16 17 18 19
Ctrie size 4 9 12 20 25 28 size =
13 0 1 actual size = 12 16 17 18 19 But the size was never 13!
Global state information 4 9 12 20 25 28 0
1 16 17 18 19 • size • find • filter • iterator
Global state information 4 9 12 20 25 28 0
1 16 17 18 19 • size • find • filter • iterator snapshot
Snapshot using locks 4 9 12 20 25 28 0
1 16 17 18 19
Snapshot using locks 4 9 12 20 25 28 0
1 16 17 18 19 • copy expensive
Snapshot using locks 4 9 12 20 25 28 0
1 16 17 18 19 • copy expensive • not lock-free
Snapshot using locks 4 9 12 20 25 28 0
1 16 17 18 19 • copy expensive • not lock-free • can insert or remove remain lock-free? 0 1 2 CAS
Snapshot using locks 4 9 12 20 25 28 0
1 16 17 18 19 • copy expensive • not lock-free • can insert or remove remain lock-free? 0 1 2 CAS
Snapshot using logs 4 9 12 20 25 28 0
1 16 17 18 19 • keep a linked list of previous values in each I-node
Snapshot using logs 4 9 12 20 25 28 0
1 16 17 18 19 0 1 2 • keep a linked list of previous values in each I-node
Snapshot using logs 4 9 12 20 25 28 0
1 16 17 18 19 • keep a linked list of previous values in each I-node • when is it safe to delete old entries? 0 1 2
Snapshot using immutability 4 9 12 20 25 28 0
1 16 17 18 19 root
Snapshot using immutability 4 9 12 20 25 28 0
1 16 17 18 19 #1 #1 #1 #1 #1 root
Snapshot using immutability 4 9 12 20 25 28 0
1 16 17 18 19 #1 #1 #1 #1 #1 snapshot! root
Snapshot using immutability 4 9 12 20 25 28 0
1 16 17 18 19 #1 #1 #1 #1 #1 snapshot! #2 root 1) create new I-node at #2
Snapshot using immutability 4 9 12 20 25 28 0
1 16 17 18 19 #1 #1 #1 #1 #1 snapshot! #2 root 2) set snapshot snapshot #1
Snapshot using immutability 4 9 12 20 25 28 0
1 16 17 18 19 #1 #1 #1 #1 #1 snapshot! #2 root 3) CAS root to new I-node snapshot #1
Snapshot using immutability 4 9 12 20 25 28 0
1 16 17 18 19 #1 #1 #1 #1 #1 subsequent insert #2 root snapshot #1 2
Snapshot using immutability 4 9 12 20 25 28 0
1 16 17 18 19 #1 #1 #1 #1 #1 subsequent insert #2 root snapshot #1 2 generation #2 - ok!
Snapshot using immutability 4 9 12 20 25 28 0
1 16 17 18 19 #1 #1 #1 #1 #1 subsequent insert #2 root snapshot #1 2 generation #1 not ok, too old!
Snapshot using immutability 4 9 12 20 25 28 0
1 16 17 18 19 #1 #1 #1 #1 #1 subsequent insert #2 root 1) create updated node at #2 snapshot #1 2 #2 #2
Snapshot using immutability 4 9 12 20 25 28 0
1 16 17 18 19 #1 #1 #1 #1 #1 subsequent insert #2 root 2) CAS to the updated node snapshot #1 2 #2 #2
Snapshot using immutability 4 9 12 20 25 28 0
1 16 17 18 19 #1 #1 #1 #1 #1 subsequent insert #2 root snapshot #1 2 #2 #2 #1 too old!
Snapshot using immutability 4 9 12 20 25 28 0
1 16 17 18 19 #1 #1 #1 #1 #1 subsequent insert #2 root snapshot #1 2 #2 #2 4 9 12 #2 1) create updated node at #2
Snapshot using immutability 4 9 12 20 25 28 0
1 16 17 18 19 #1 #1 #1 #1 #1 subsequent insert #2 root snapshot #1 2 #2 #2 4 9 12 #2 2) CAS
Snapshot using immutability 4 9 12 20 25 28 0
1 16 17 18 19 #1 #1 #1 #1 #1 subsequent insert #2 root snapshot #1 #2 #2 4 9 12 #2 0 1 2 finally, create a new leaf and CAS
Snapshot using immutability 4 9 12 20 25 28 0
1 16 17 18 19 #1 #1 #1 #1 #1 another insert #2 root snapshot #1 #2 #2 4 9 12 #2 0 1 2 3
Snapshot using immutability 4 9 12 20 25 28 0
1 16 17 18 19 #1 #1 #1 #1 #1 another insert #2 root snapshot #1 #2 #2 4 9 12 #2 0 1 2 0 1 2 3
Snapshot using immutability 4 9 12 20 25 28 0
1 16 17 18 19 #1 #1 #1 #1 #1 But... this won't really work... why? #2 root snapshot #1 #2 #2 4 9 12 #2 0 1 2 0 1 2 3
Snapshot using immutability 4 9 12 20 25 28 0
1 16 17 18 19 #1 #1 #1 #1 #1 #2 root snapshot #1 #2 #2 4 9 12 #2 0 1 2 0 1 2 3 T2: remove 19 16 17 18
Snapshot using immutability 4 9 12 20 25 28 0
1 16 17 18 19 #1 #1 #1 #1 #1 #2 root snapshot #1 #2 #2 4 9 12 #2 0 1 2 0 1 2 3 T2: remove 19 16 17 18 CAS
Snapshot using immutability 4 9 12 20 25 28 0
1 16 17 18 19 #1 #1 #1 #1 #1 #2 root snapshot #1 #2 #2 4 9 12 #2 0 1 2 0 1 2 3 T2: remove 19 16 17 18 CAS How to fail this last CAS?
Snapshot using immutability 4 9 12 20 25 28 0
1 16 17 18 19 #1 #1 #1 #1 #1 #2 root snapshot #1 #2 #2 4 9 12 #2 0 1 2 0 1 2 3 T2: remove 19 16 17 18 DCAS How to fail this last CAS? DCAS
Snapshot using immutability 4 9 12 20 25 28 0
1 16 17 18 19 #1 #1 #1 #1 #1 #2 root snapshot #1 #2 #2 4 9 12 #2 0 1 2 0 1 2 3 T2: remove 19 16 17 18 How to fail this last CAS? DCAS - software based DCAS
Snapshot using immutability 4 9 12 20 25 28 0
1 16 17 18 19 #1 #1 #1 #1 #1 #2 root snapshot #1 #2 #2 4 9 12 #2 0 1 2 0 1 2 3 T2: remove 19 16 17 18 How to fail this last CAS? DCAS - software based ...creates intermediate objects DCAS
GCAS - generation-compare-and-swap 4 9 12 20 25 28 0
1 16 17 18 19 #1 #1 #1 #1 #1 #2 root snapshot #1 #2 #2 4 9 12 #2 0 1 2 3 T2: remove 19 16 17 18 prev 1) set prev field
GCAS - generation-compare-and-swap 4 9 12 20 25 28 0
1 16 17 18 19 #1 #1 #1 #1 #1 #2 root snapshot #1 #2 #2 4 9 12 #2 0 1 2 3 T2: remove 19 16 17 18 prev 2) CAS
GCAS - generation-compare-and-swap 4 9 12 20 25 28 0
1 16 17 18 19 #1 #1 #1 #1 #1 #2 root snapshot #1 #2 #2 4 9 12 #2 0 1 2 3 T2: remove 19 16 17 18 prev 3) read root generation
GCAS - generation-compare-and-swap 4 9 12 20 25 28 0
1 16 17 18 19 #1 #1 #1 #1 #1 #2 root snapshot #1 #2 #2 4 9 12 #2 0 1 2 3 16 17 18 prev 4) if root generation changed CAS prev to FailedNode(prev) FN
GCAS - generation-compare-and-swap 4 9 12 20 25 28 0
1 16 17 18 19 #1 #1 #1 #1 #1 #2 root snapshot #1 #2 #2 4 9 12 #2 0 1 2 3 16 17 18 prev 4) if root generation changed CAS prev to FailedNode(prev) FN
GCAS - generation-compare-and-swap 4 9 12 20 25 28 0
1 16 17 18 19 #1 #1 #1 #1 #1 #2 root snapshot #1 #2 #2 4 9 12 #2 0 1 2 3 16 17 18 prev 5) CAS to previous value FN
GCAS - generation-compare-and-swap 4 9 12 20 25 28 0
1 16 17 18 19 #1 #1 #1 #1 #1 #2 root snapshot #1 #2 #2 4 9 12 #2 0 1 2 3 16 17 18 prev 4) if root generation unchanged CAS prev to null
GCAS - generation-compare-and-swap 4 9 12 20 25 28 0
1 16 17 18 19 #1 #1 #1 #1 #1 #2 root snapshot #1 #2 #2 4 9 12 #2 0 1 2 3 16 17 18 4) if root generation unchanged CAS prev to null
GCAS - generation-compare-and-swap 4 9 12 20 25 28 0
1 16 17 18 19 #1 #1 #1 #1 #1 #2 root snapshot #1 #2 #2 4 9 12 #2 0 1 2 3 1) Replace all CAS with GCAS 2) Replace all READ with GCAS_READ (which checks if prev field is null)
Snapshot-based iterator def iterator = if (isSnapshot) new Iterator(root) else
snapshot().iterator()
Snapshot-based size def size = { val sz = 0
val it = iterator while (it.hasNext) sz += 1 sz }
Snapshot-based size def size = { val sz = 0
val it = iterator while (it.hasNext) sz += 1 sz } Above is O(n). But, by caching size in nodes - amortized O(logk n)! (see source code)
Snapshot-based atomic clear def clear() = { val or =
READ(root) val nr = new INode(new Gen) if (!CAS(root, or, nr)) clear() } (roughly)
Evaluation - quad core i7
Evaluation – UltraSPARC T2
Evaluation – 4x 8-core i7
Evaluation – snapshot
Conclusion • snapshots are linearizable and lock-free • snapshots take
constant time • snapshots are horizontally scalable • snapshots add a non-significant overhead to the algorithm if they aren't used • the approach may be applicable to tree-based lock-free data-structures in general (intuition)
Thank you!