Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Ctrie Data Structure
Search
Sponsored
·
Your Podcast. Everywhere. Effortlessly.
Share. Educate. Inspire. Entertain. You do you. We'll handle the rest.
→
Aleksandar Prokopec
February 28, 2012
Programming
0
240
Ctrie Data Structure
The description of the Ctrie data structure from PPoPP 2012.
Aleksandar Prokopec
February 28, 2012
Tweet
Share
More Decks by Aleksandar Prokopec
See All by Aleksandar Prokopec
ScalaMeter in 2014
axel22
0
350
Reactive Collections
axel22
0
200
A Reactive 3D Game Engine in Scala
axel22
4
8.3k
ScalaBlitz
axel22
0
220
Work-stealing Tree Scheduler
axel22
1
86
ScalaMeter
axel22
0
150
Parallel Collections Overview
axel22
0
110
Introduction to Scala
axel22
2
310
Other Decks in Programming
See All in Programming
15年目のiOSアプリを1から作り直す技術
teakun
0
410
Premier Disciplin for Micro Frontends Multi Version/ Framework Scenarios @OOP 2026, Munic
manfredsteyer
PRO
0
150
izumin5210のプロポーザルのネタ探し #tskaigi_msup
izumin5210
1
300
The Past, Present, and Future of Enterprise Java
ivargrimstad
0
690
今、アーキテクトとして 品質保証にどう関わるか
nealle
0
160
CSC307 Lecture 12
javiergs
PRO
0
440
今更考える「単一責任原則」 / Thinking about the Single Responsibility Principle
tooppoo
0
370
個人開発は儲からない - それでも開発開始1ヶ月で300万円売り上げた方法
taishiyade
0
110
15年続くIoTサービスのSREエンジニアが挑む分散トレーシング導入
melonps
2
250
iOSアプリでフロントエンドと仲良くする
ryunakayama
0
110
AIと一緒にレガシーに向き合ってみた
nyafunta9858
0
320
AIエージェントのキホンから学ぶ「エージェンティックコーディング」実践入門
masahiro_nishimi
7
1.1k
Featured
See All Featured
How to optimise 3,500 product descriptions for ecommerce in one day using ChatGPT
katarinadahlin
PRO
1
3.4k
How to train your dragon (web standard)
notwaldorf
97
6.5k
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
231
22k
Context Engineering - Making Every Token Count
addyosmani
9
680
The Mindset for Success: Future Career Progression
greggifford
PRO
0
250
Thoughts on Productivity
jonyablonski
75
5.1k
Product Roadmaps are Hard
iamctodd
PRO
55
12k
AI Search: Implications for SEO and How to Move Forward - #ShenzhenSEOConference
aleyda
1
1.1k
Rebuilding a faster, lazier Slack
samanthasiow
85
9.4k
The untapped power of vector embeddings
frankvandijk
2
1.6k
Bootstrapping a Software Product
garrettdimon
PRO
307
120k
Facilitating Awesome Meetings
lara
57
6.8k
Transcript
Concurrent Tries with Efficient Non-blocking Snapshots Aleksandar Prokopec Phil Bagwell
Martin Odersky École Polytechnique Fédérale de Lausanne Nathan Bronson Stanford
Motivation val numbers = getNumbers() // compute square roots numbers
foreach { entry => x = entry.root n = entry.number entry.root = 0.5 * (x + n / x) if (abs(entry.root - x) < eps) numbers.remove(entry) }
Hash Array Mapped Tries (HAMT)
Hash Array Mapped Tries (HAMT) 0 = 0000002
Hash Array Mapped Tries (HAMT) 0
Hash Array Mapped Tries (HAMT) 0 16 = 0100002
Hash Array Mapped Tries (HAMT) 0 16
Hash Array Mapped Tries (HAMT) 0 16 4 = 0001002
Hash Array Mapped Tries (HAMT) 16 0 4 = 0001002
Hash Array Mapped Tries (HAMT) 16 0 4
Hash Array Mapped Tries (HAMT) 16 0 4 12 =
0011002
Hash Array Mapped Tries (HAMT) 16 0 4 12 =
0011002
Hash Array Mapped Tries (HAMT) 16 0 4 12
Hash Array Mapped Tries (HAMT) 16 33 0 4 12
Hash Array Mapped Tries (HAMT) 16 33 0 4 12
48
Hash Array Mapped Tries (HAMT) 16 0 4 12 48
33 37
Hash Array Mapped Tries (HAMT) 16 4 12 48 33
37 0 3
Hash Array Mapped Tries (HAMT) 4 12 16 20 25
33 37 0 1 8 9 3 48 57
Immutable HAMT • used as immutable maps in functional languages
4 12 16 20 25 33 37 0 1 8 9 3
Immutable HAMT • updates rewrite path from root to leaf
4 12 16 20 25 33 37 0 1 8 9 3 4 12 8 9 11 insert(11)
Immutable HAMT • updates rewrite path from root to leaf
4 12 16 20 25 33 37 0 1 8 9 3 4 12 8 9 11 insert(11) efficient updates - logk (n)
Node compression 48 57 48 57 1 0 1 0
48 57 1 0 1 0 48 57 10 BITPOP(((1 << ((hc >> lev) & 1F)) – 1) & BMP)
Node compression 48 57 48 57 1 0 1 0
48 57 1 0 1 0 48 57 10 48 57
Ctrie Can mutable HAMT be modified to be thread-safe?
Ctrie insert 4 9 12 16 20 25 33 37
0 1 3 48 57 17 = 0100012
Ctrie insert 4 9 12 16 20 25 33 37
0 1 3 48 57 17 = 0100012 16 17 1) allocate
Ctrie insert 4 9 12 20 25 33 37 0
1 3 48 57 17 = 0100012 16 17 2) CAS
Ctrie insert 4 9 12 20 25 33 37 0
1 3 48 57 17 = 0100012 16 17
Ctrie insert 4 9 12 33 37 0 1 3
48 57 18 = 0100102 16 17 20 25
Ctrie insert 4 9 12 33 37 0 1 3
48 57 18 = 0100102 16 17 20 25 1) allocate 16 17 18
Ctrie insert 4 9 12 33 37 0 1 3
48 57 18 = 0100102 20 25 2) CAS 16 17 18
Ctrie insert 4 9 12 33 37 0 1 3
48 57 18 = 0100102 20 25 2) CAS 16 17 18 Unless…
Ctrie insert 4 9 12 33 37 0 1 3
48 57 18 = 0100102 16 17 20 25 T1-1) allocate 16 17 18 Unless… 28 = 0111002 T1 T2
Ctrie insert 4 9 12 0 1 3 18 =
0100102 16 17 20 25 T1-1) allocate 16 17 18 Unless… 28 = 0111002 T1 T2 20 25 28 T2-1) allocate
Ctrie insert 4 9 12 0 1 3 18 =
0100102 16 17 20 25 T1-1) allocate 16 17 18 28 = 0111002 T1 T2 20 25 28 T2-2) CAS
Ctrie insert 4 9 12 0 1 3 18 =
0100102 16 17 20 25 T1-2) CAS 16 17 18 28 = 0111002 T1 T2 20 25 28 T2-2) CAS
Ctrie insert 4 9 12 0 1 3 18 =
0100102 16 17 20 25 16 17 18 28 = 0111002 T1 T2 20 25 28 Lost insert!
Ctrie insert – 2nd attempt 4 9 12 0 1
3 16 17 20 25 Solution: I-nodes
Ctrie insert – 2nd attempt 4 9 12 0 1
3 16 17 20 25 18 = 0100102 28 = 0111002 T1 T2
Ctrie insert – 2nd attempt 4 9 12 0 1
3 16 17 T1 T2 20 25 18 = 0100102 28 = 0111002 16 17 18 20 25 28 T2-1) allocate T1-1) allocate
Ctrie insert – 2nd attempt 4 9 12 0 1
3 16 17 T1 T2 20 25 16 17 18 20 25 28 T2-2) CAS T1-2) CAS
Ctrie insert – 2nd attempt 4 9 12 0 1
3 16 17 18 20 25 28
Ctrie insert – 2nd attempt 4 9 12 0 1
3 16 17 18 20 25 28 Idea: once added to the Ctrie, I-nodes remain present.
Ctrie insert – 2nd attempt 4 9 12 0 1
3 16 17 18 20 25 28 Remove operation supported as well - details in the paper.
Ctrie size 4 9 12 0 1 3 16 17
18 20 25 28
Ctrie size 4 9 12 0 1 3 16 17
18 20 25 28 size = 0
Ctrie size 4 9 12 0 1 3 16 17
18 20 25 28 size = 0
Ctrie size 4 9 12 0 1 3 16 17
18 20 25 28 size = 0
Ctrie size 4 9 12 0 1 3 16 17
18 20 25 28 size = 0
Ctrie size 4 9 12 0 1 3 16 17
18 20 25 28 size = 1
Ctrie size 4 9 12 0 1 3 16 17
18 20 25 28 size = 2
Ctrie size 4 9 12 0 1 3 16 17
18 20 25 28 size = 3
Ctrie size 4 9 12 0 1 3 16 17
18 20 25 28 size = 5
Ctrie size 4 9 12 0 1 3 16 17
18 20 25 28 size = 5 actual size = 12
Ctrie size 4 9 12 0 1 3 16 17
18 20 25 28 size = 5 0 1 actual size = 12
Ctrie size 4 9 12 0 1 3 16 17
18 20 25 28 size = 5 0 1 CAS actual size = 11
Ctrie size 4 9 12 16 17 18 20 25
28 size = 5 0 1 actual size = 11
Ctrie size 4 9 12 16 17 18 20 25
28 size = 6 0 1 actual size = 11
Ctrie size 4 9 12 16 17 18 20 25
28 size = 6 0 1 actual size = 11 19
Ctrie size 4 9 12 16 17 18 20 25
28 size = 6 0 1 actual size = 11 16 17 18 19
Ctrie size 4 9 12 16 17 18 20 25
28 size = 6 0 1 actual size = 12 16 17 18 19 CAS
Ctrie size 4 9 12 20 25 28 size =
6 0 1 actual size = 12 16 17 18 19
Ctrie size 4 9 12 20 25 28 size =
6 0 1 actual size = 12 16 17 18 19
Ctrie size 4 9 12 20 25 28 size =
7 0 1 actual size = 9 16 17 18 19
Ctrie size 4 9 12 20 25 28 size =
8 0 1 actual size = 12 16 17 18 19
Ctrie size 4 9 12 20 25 28 size =
9 0 1 actual size = 12 16 17 18 19
Ctrie size 4 9 12 20 25 28 size =
10 0 1 actual size = 12 16 17 18 19
Ctrie size 4 9 12 20 25 28 size =
11 0 1 actual size = 12 16 17 18 19
Ctrie size 4 9 12 20 25 28 size =
12 0 1 actual size = 12 16 17 18 19
Ctrie size 4 9 12 20 25 28 size =
13 0 1 actual size = 12 16 17 18 19
Ctrie size 4 9 12 20 25 28 size =
13 0 1 actual size = 12 16 17 18 19 But the size was never 13!
Global state information 4 9 12 20 25 28 0
1 16 17 18 19 • size • find • filter • iterator
Global state information 4 9 12 20 25 28 0
1 16 17 18 19 • size • find • filter • iterator snapshot
Snapshot using locks 4 9 12 20 25 28 0
1 16 17 18 19
Snapshot using locks 4 9 12 20 25 28 0
1 16 17 18 19 • copy expensive
Snapshot using locks 4 9 12 20 25 28 0
1 16 17 18 19 • copy expensive • not lock-free
Snapshot using locks 4 9 12 20 25 28 0
1 16 17 18 19 • copy expensive • not lock-free • can insert or remove remain lock-free? 0 1 2 CAS
Snapshot using locks 4 9 12 20 25 28 0
1 16 17 18 19 • copy expensive • not lock-free • can insert or remove remain lock-free? 0 1 2 CAS
Snapshot using logs 4 9 12 20 25 28 0
1 16 17 18 19 • keep a linked list of previous values in each I-node
Snapshot using logs 4 9 12 20 25 28 0
1 16 17 18 19 0 1 2 • keep a linked list of previous values in each I-node
Snapshot using logs 4 9 12 20 25 28 0
1 16 17 18 19 • keep a linked list of previous values in each I-node • when is it safe to delete old entries? 0 1 2
Snapshot using immutability 4 9 12 20 25 28 0
1 16 17 18 19 root
Snapshot using immutability 4 9 12 20 25 28 0
1 16 17 18 19 #1 #1 #1 #1 #1 root
Snapshot using immutability 4 9 12 20 25 28 0
1 16 17 18 19 #1 #1 #1 #1 #1 snapshot! root
Snapshot using immutability 4 9 12 20 25 28 0
1 16 17 18 19 #1 #1 #1 #1 #1 snapshot! #2 root 1) create new I-node at #2
Snapshot using immutability 4 9 12 20 25 28 0
1 16 17 18 19 #1 #1 #1 #1 #1 snapshot! #2 root 2) set snapshot snapshot #1
Snapshot using immutability 4 9 12 20 25 28 0
1 16 17 18 19 #1 #1 #1 #1 #1 snapshot! #2 root 3) CAS root to new I-node snapshot #1
Snapshot using immutability 4 9 12 20 25 28 0
1 16 17 18 19 #1 #1 #1 #1 #1 subsequent insert #2 root snapshot #1 2
Snapshot using immutability 4 9 12 20 25 28 0
1 16 17 18 19 #1 #1 #1 #1 #1 subsequent insert #2 root snapshot #1 2 generation #2 - ok!
Snapshot using immutability 4 9 12 20 25 28 0
1 16 17 18 19 #1 #1 #1 #1 #1 subsequent insert #2 root snapshot #1 2 generation #1 not ok, too old!
Snapshot using immutability 4 9 12 20 25 28 0
1 16 17 18 19 #1 #1 #1 #1 #1 subsequent insert #2 root 1) create updated node at #2 snapshot #1 2 #2 #2
Snapshot using immutability 4 9 12 20 25 28 0
1 16 17 18 19 #1 #1 #1 #1 #1 subsequent insert #2 root 2) CAS to the updated node snapshot #1 2 #2 #2
Snapshot using immutability 4 9 12 20 25 28 0
1 16 17 18 19 #1 #1 #1 #1 #1 subsequent insert #2 root snapshot #1 2 #2 #2 #1 too old!
Snapshot using immutability 4 9 12 20 25 28 0
1 16 17 18 19 #1 #1 #1 #1 #1 subsequent insert #2 root snapshot #1 2 #2 #2 4 9 12 #2 1) create updated node at #2
Snapshot using immutability 4 9 12 20 25 28 0
1 16 17 18 19 #1 #1 #1 #1 #1 subsequent insert #2 root snapshot #1 2 #2 #2 4 9 12 #2 2) CAS
Snapshot using immutability 4 9 12 20 25 28 0
1 16 17 18 19 #1 #1 #1 #1 #1 subsequent insert #2 root snapshot #1 #2 #2 4 9 12 #2 0 1 2 finally, create a new leaf and CAS
Snapshot using immutability 4 9 12 20 25 28 0
1 16 17 18 19 #1 #1 #1 #1 #1 another insert #2 root snapshot #1 #2 #2 4 9 12 #2 0 1 2 3
Snapshot using immutability 4 9 12 20 25 28 0
1 16 17 18 19 #1 #1 #1 #1 #1 another insert #2 root snapshot #1 #2 #2 4 9 12 #2 0 1 2 0 1 2 3
Snapshot using immutability 4 9 12 20 25 28 0
1 16 17 18 19 #1 #1 #1 #1 #1 But... this won't really work... why? #2 root snapshot #1 #2 #2 4 9 12 #2 0 1 2 0 1 2 3
Snapshot using immutability 4 9 12 20 25 28 0
1 16 17 18 19 #1 #1 #1 #1 #1 #2 root snapshot #1 #2 #2 4 9 12 #2 0 1 2 0 1 2 3 T2: remove 19 16 17 18
Snapshot using immutability 4 9 12 20 25 28 0
1 16 17 18 19 #1 #1 #1 #1 #1 #2 root snapshot #1 #2 #2 4 9 12 #2 0 1 2 0 1 2 3 T2: remove 19 16 17 18 CAS
Snapshot using immutability 4 9 12 20 25 28 0
1 16 17 18 19 #1 #1 #1 #1 #1 #2 root snapshot #1 #2 #2 4 9 12 #2 0 1 2 0 1 2 3 T2: remove 19 16 17 18 CAS How to fail this last CAS?
Snapshot using immutability 4 9 12 20 25 28 0
1 16 17 18 19 #1 #1 #1 #1 #1 #2 root snapshot #1 #2 #2 4 9 12 #2 0 1 2 0 1 2 3 T2: remove 19 16 17 18 DCAS How to fail this last CAS? DCAS
Snapshot using immutability 4 9 12 20 25 28 0
1 16 17 18 19 #1 #1 #1 #1 #1 #2 root snapshot #1 #2 #2 4 9 12 #2 0 1 2 0 1 2 3 T2: remove 19 16 17 18 How to fail this last CAS? DCAS - software based DCAS
Snapshot using immutability 4 9 12 20 25 28 0
1 16 17 18 19 #1 #1 #1 #1 #1 #2 root snapshot #1 #2 #2 4 9 12 #2 0 1 2 0 1 2 3 T2: remove 19 16 17 18 How to fail this last CAS? DCAS - software based ...creates intermediate objects DCAS
GCAS - generation-compare-and-swap 4 9 12 20 25 28 0
1 16 17 18 19 #1 #1 #1 #1 #1 #2 root snapshot #1 #2 #2 4 9 12 #2 0 1 2 3 T2: remove 19 16 17 18 prev 1) set prev field
GCAS - generation-compare-and-swap 4 9 12 20 25 28 0
1 16 17 18 19 #1 #1 #1 #1 #1 #2 root snapshot #1 #2 #2 4 9 12 #2 0 1 2 3 T2: remove 19 16 17 18 prev 2) CAS
GCAS - generation-compare-and-swap 4 9 12 20 25 28 0
1 16 17 18 19 #1 #1 #1 #1 #1 #2 root snapshot #1 #2 #2 4 9 12 #2 0 1 2 3 T2: remove 19 16 17 18 prev 3) read root generation
GCAS - generation-compare-and-swap 4 9 12 20 25 28 0
1 16 17 18 19 #1 #1 #1 #1 #1 #2 root snapshot #1 #2 #2 4 9 12 #2 0 1 2 3 16 17 18 prev 4) if root generation changed CAS prev to FailedNode(prev) FN
GCAS - generation-compare-and-swap 4 9 12 20 25 28 0
1 16 17 18 19 #1 #1 #1 #1 #1 #2 root snapshot #1 #2 #2 4 9 12 #2 0 1 2 3 16 17 18 prev 4) if root generation changed CAS prev to FailedNode(prev) FN
GCAS - generation-compare-and-swap 4 9 12 20 25 28 0
1 16 17 18 19 #1 #1 #1 #1 #1 #2 root snapshot #1 #2 #2 4 9 12 #2 0 1 2 3 16 17 18 prev 5) CAS to previous value FN
GCAS - generation-compare-and-swap 4 9 12 20 25 28 0
1 16 17 18 19 #1 #1 #1 #1 #1 #2 root snapshot #1 #2 #2 4 9 12 #2 0 1 2 3 16 17 18 prev 4) if root generation unchanged CAS prev to null
GCAS - generation-compare-and-swap 4 9 12 20 25 28 0
1 16 17 18 19 #1 #1 #1 #1 #1 #2 root snapshot #1 #2 #2 4 9 12 #2 0 1 2 3 16 17 18 4) if root generation unchanged CAS prev to null
GCAS - generation-compare-and-swap 4 9 12 20 25 28 0
1 16 17 18 19 #1 #1 #1 #1 #1 #2 root snapshot #1 #2 #2 4 9 12 #2 0 1 2 3 1) Replace all CAS with GCAS 2) Replace all READ with GCAS_READ (which checks if prev field is null)
Snapshot-based iterator def iterator = if (isSnapshot) new Iterator(root) else
snapshot().iterator()
Snapshot-based size def size = { val sz = 0
val it = iterator while (it.hasNext) sz += 1 sz }
Snapshot-based size def size = { val sz = 0
val it = iterator while (it.hasNext) sz += 1 sz } Above is O(n). But, by caching size in nodes - amortized O(logk n)! (see source code)
Snapshot-based atomic clear def clear() = { val or =
READ(root) val nr = new INode(new Gen) if (!CAS(root, or, nr)) clear() } (roughly)
Evaluation - quad core i7
Evaluation – UltraSPARC T2
Evaluation – 4x 8-core i7
Evaluation – snapshot
Conclusion • snapshots are linearizable and lock-free • snapshots take
constant time • snapshots are horizontally scalable • snapshots add a non-significant overhead to the algorithm if they aren't used • the approach may be applicable to tree-based lock-free data-structures in general (intuition)
Thank you!