Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
DSプロジェクト課題の探し方
Search
ぶんちん
September 21, 2023
Technology
0
190
DSプロジェクト課題の探し方
ぶんちん
September 21, 2023
Tweet
Share
More Decks by ぶんちん
See All by ぶんちん
良書紹介03_ データ分析読解の技術
bunnchinn3
0
34
MVP未満からの成果獲得
bunnchinn3
0
26
個人計画とプロジェクト遂行の考え方
bunnchinn3
0
52
データ分析イベントデータ説明(VRChatイベントカレンダー)
bunnchinn3
0
82
<事前告知> DS集会データ分析イベント VRChatイベントカレンダー
bunnchinn3
0
72
統計知識と実務のギャップ
bunnchinn3
0
100
製造業における品質不良の要因分析04_ツール選択の考え方
bunnchinn3
0
170
これまでLT振り返り 何が人気の話題?
bunnchinn3
0
100
製造業における品質不良の要因分析03_必要な知識の入手方法
bunnchinn3
0
120
Other Decks in Technology
See All in Technology
Nx × AI によるモノレポ活用 〜コードジェネレーター編〜
puku0x
0
560
Bet "Bet AI" - Accelerating Our AI Journey #BetAIDay
layerx
PRO
4
1.7k
ロールが細分化された組織でSREと協働するインフラエンジニアは何をするか? / SRE Lounge #18
kossykinto
0
220
金融サービスにおける高速な価値提供とAIの役割 #BetAIDay
layerx
PRO
1
830
UDDのススメ - 拡張版 -
maguroalternative
1
510
はじめての転職講座/The Guide of First Career Change
kwappa
0
550
AI時代の大規模データ活用とセキュリティ戦略
ken5scal
0
100
마라톤 끝의 단거리 스퍼트: 2025년의 AI
inureyes
PRO
1
740
僕たちが「開発しやすさ」を求め 模索し続けたアーキテクチャ #アーキテクチャ勉強会_findy
bengo4com
0
2.4k
家族の思い出を形にする 〜 1秒動画の生成を支えるインフラアーキテクチャ
ojima_h
3
1.1k
AIに頼りすぎない新人育成術
cuebic9bic
3
300
Oracle Cloud Infrastructure:2025年7月度サービス・アップデート
oracle4engineer
PRO
1
190
Featured
See All Featured
Being A Developer After 40
akosma
90
590k
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
10
1k
Building a Scalable Design System with Sketch
lauravandoore
462
33k
Code Reviewing Like a Champion
maltzj
524
40k
Reflections from 52 weeks, 52 projects
jeffersonlam
351
21k
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
283
13k
The MySQL Ecosystem @ GitHub 2015
samlambert
251
13k
It's Worth the Effort
3n
185
28k
How to Create Impact in a Changing Tech Landscape [PerfNow 2023]
tammyeverts
53
2.9k
Documentation Writing (for coders)
carmenintech
73
5k
Writing Fast Ruby
sferik
628
62k
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
131
19k
Transcript
超初心者向け DSプロジェクト課題の探し方 ぶんちん 2023年9月21日 データサイエンティスト集会 in VRC 1
自己紹介 ぶんちん 複合経営が特徴の企業(製造業)に所属 データ分析担当者だったが。。。 成果獲得を狙うと、 同じことに繰り返しで 飽きた 他者にやらせたら、
成果が増えるのでは 特に非専門家向けのDS教育 2
注意!! 基本的に高度な技術の導入に体制が整い切れていない組織 新規技術の開発ではなく、具体的な経済効果の獲得が私の主目的 多くの案件を根拠にしているものの、あくまで私の経験則 3 泥臭い The
重厚長大 製造業 私はスマートな業界ではなく、 が前提のお話です。
よくある課題探しの迷走 4 典型的な失敗パターン 報告相手の理解がないことが問題と考えていませんか? そんなこと 既にわかっている だからどうしたら 良いということ? 使えないなぁ 報告相手
データ分析 報告・提案 できない。 無理。 特に管理部門が中心の活動でありがち 現実的では ない
どこまで想定した提案ですか? 理想 解決策 作業手順 非常時の 対応 他部署と の調整 判断基準 運用体制
5 理想の実現に必要な要素 そんなこと 既にわかっている だからどうしたら 良いということ? 使えないなぁ 報告相手 できない。 無理。 現実的では ない こういった対応も当然
課題とは 理想と現実のギャップ = 課題 理想と現実、両方とも把握していないと 課題を見つけることはできない 初心者データサイエンティストでは荷が重い 6
理想 現実 ギャップ = 課題 だからといって、何もしないわけにはいかない
ビジネス データエン ジニアリン グ データサイ エンス 誰だったら適切な課題を立てられるか 7 データサイエンティストに求められるスキルセット ビジネスの最前線にいる人たち
ここに特化して 勉強するのは難しい
自身の役割について認識を変えよう 目的:取り組むべき課題を見つける 初心者データサイエンティストの役割 × 成果につながる課題を自身で見つける 〇 成果につながる課題を誰かに見つけてもらう 相手に課題を見つけられるようにサポートすること 8
具体的にやるべきことは 建前 「ちゃんとあなたの仕事に役に立つ施策を考えたいから、現 状の姿や意見がほしい」「実績データから自分の理解とのズ レについて教えてほしい」という体裁で相談 本音 初心者DS自身が想定している理想像と実態の妥当性を確認さ せ、実績データの見方のヒアリング 理想像をイメージさせつつ実績データを見ることで、自然に データの考察させて課題を具体化させる
優秀な中心人物の協力が得られたらOK 注意)相手の要望をそのまま叶えるのではない 9 DS ビジネスの担当者 人によっては適切に集計・可視化したデータを見せるだけで勝手に進めてくれることも