Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
製造業における品質不良の要因分析04_ツール選択の考え方
Search
ぶんちん
October 31, 2024
Business
0
17
製造業における品質不良の要因分析04_ツール選択の考え方
ぶんちん
October 31, 2024
Tweet
Share
More Decks by ぶんちん
See All by ぶんちん
これまでLT振り返り 何が人気の話題?
bunnchinn3
0
43
製造業における品質不良の要因分析03_必要な知識の入手方法
bunnchinn3
0
41
製造業における品質不良の要因分析02_分析着手順の考え方
bunnchinn3
0
41
製造業における品質不良の要因分析01_ゴール設定
bunnchinn3
0
73
良書紹介02_Head First データ解析
bunnchinn3
0
34
良書紹介01_生命科学・生物工学のための間違いから学ぶ実践統計解析
bunnchinn3
0
51
OJT指導のはじめかた
bunnchinn3
0
140
自律機械知能の行動観察
bunnchinn3
0
110
ぶんちん流データサイエンス教育のコンセプト
bunnchinn3
0
170
Other Decks in Business
See All in Business
El Mercado cuartohorario de electricidad
neuroenergia
PRO
0
250
SaaS開発における手戻りを減らすためのリファインメントの実践
bicstone
3
610
STRACT, Inc. Company Deck
stract
0
1.1k
マネージャーとエンジニアが効果的に協力するために意識した方が良い事
kotominaga
2
220
これを使用
ehealthcare2004
0
290
Cobe Associe: Who we are? /コンサル・市場調査・人材紹介のCobe Associe
nozomi
6
18k
VISASQ: ABOUT US
eikohashiba
15
460k
Startup CTO of the year 2024 株式会社ハイヤールー
kkosukeee
0
3.5k
採用資料
daichihayashi
0
260
株式会社Beer and Tech/HitoHana(ひとはな) 採用資料 2024.11
beerandtech_recruiter
1
470
ARI会社説明
arisaiyou
0
4.2k
サスメド株式会社 Culture Deck
susmed
0
36k
Featured
See All Featured
Helping Users Find Their Own Way: Creating Modern Search Experiences
danielanewman
29
2.3k
CoffeeScript is Beautiful & I Never Want to Write Plain JavaScript Again
sstephenson
159
15k
Raft: Consensus for Rubyists
vanstee
136
6.6k
Designing for Performance
lara
604
68k
Rebuilding a faster, lazier Slack
samanthasiow
79
8.7k
Optimizing for Happiness
mojombo
376
70k
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
47
5k
Visualization
eitanlees
145
15k
Building Flexible Design Systems
yeseniaperezcruz
327
38k
Optimising Largest Contentful Paint
csswizardry
33
2.9k
How GitHub (no longer) Works
holman
310
140k
A Philosophy of Restraint
colly
203
16k
Transcript
製造業における品質不良の要因分析 その4 ぶんちん 2024年10月31日 データサイエンティスト集会 in VRC 1
自己紹介 ぶんちん 複合経営が特徴の企業(製造業)に所属 データ分析担当者だったが。。。 e ラ ー ニ
ン グ の イ ラ ス ト ( 男 性 ) 困 っ た 顔 で 働 く 会 社 員 の イ ラ ス ト ( 男 性 ) 成果獲得を狙うと、 同じことに繰り返しで 飽きた 他者にやらせたら、 成果が増えるのでは 特に非専門家向けのDS教育 2
注意!! 多くの案件を根拠にしているものの、あくまで私の経験則 3 泥臭い The 重厚長大 製造業 私はスマートな業界ではなく、 が前提のお話です。
これまでの内容 ゴールを定義しなおそう 該当プロセスの担当者と連携しよう コスト重視して調査の着手順を決めよう 4 もっと手段系の 内容を知りたい
業務の進め方中心 データ可視化に関する ツール選択のお話です
どのツールの使い方から学びますか? 5
6 Excel使えたら 十分だよね そんなわけない
7 BIツール 入れたら良いよね そんなわけない
8 コード書けるから 十分だよね そんなわけない
課題の種類とデータ可視化の目的分類 データ可視化の目的分類 1. 仮説立案 探索的可視化 2. 意思決定 説明的可視化 3. 業務運用
監視的可視化 課題の種類 緊急性の高い課題 長期的に対応していく課題(難度の高い問題) 9 状況によって適切なツールは違います
積極的に専用ツールを活用しよう 10 まず優先する基準は 速さ・手間 特に緊急性の高いプロジェクトで重要!
1.仮説立案 探索的可視化 どこに着目したらよいかわからない データ分析環境が整っていないし、データが汚い。 でも非定常なデータを効率よく見る必要がある 試行錯誤が多く、様々な手法を使いたい
11 データ分析ツール 過去のLT資料で紹介しています 操業技術者
2.意思決定 説明的可視化 意思決定者に承認をもらうための可視化 可視化する情報は厳選して絞る! きれいに可視化できるのなら何でもよい 正直、Excelでも問題ない
12 Excelなど、使いやすいツール みんな
3.業務 監視的可視化 見るべきデータと観点が整理されている データ分析環境が整えられている(整えやすい) 日々の傾向を追い続けたい 問題を見つけたら、関係する詳細なデータを見たい
13 BIツール 企画担当者(導入) 操業管理者(利用)
コーディングはどうなの? なんにでも対応可能! でも、習得・開発コスト(時間と手間)がかかる。。。 コストをかけてでも解決したい課題があるとき向け 14 DS専門家
まとめ データ可視化の目的と対応した手段を使おう! 15 長期的に対応していく課題 緊急性の高い課題 1.仮説立案 探索的可視化 2.意思決定 説明的可視化 3.業務運用
監視的可視化 コーディング・システム開発 データ分析ツール Excelなど、なんでもOK BIツール 難度の高い問題 DS専門家 企画担当者(導入) 操業管理者(利用) 操業技術者