Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Math Cafe vol. 1 - Filtering Bit Sequence by Se...
Search
Sponsored
·
Your Podcast. Everywhere. Effortlessly.
Share. Educate. Inspire. Entertain. You do you. We'll handle the rest.
→
IWABUCHI Yu(u)ki butchi
March 28, 2015
Research
0
100
Math Cafe vol. 1 - Filtering Bit Sequence by Set Logical Vector
第1回数学カフェ「集合論理ベクトルによるビット列のフィルタリング」
IWABUCHI Yu(u)ki butchi
March 28, 2015
Tweet
Share
More Decks by IWABUCHI Yu(u)ki butchi
See All by IWABUCHI Yu(u)ki butchi
Sunday Math Party 35 - season-doyo-calculus
butchi
0
10
WBA Monozukuri 2025-04-20 Nothing Response AI
butchi
0
42
SIG-MATHEMATICA JAPAN - Log-Log Polar Discrete Plot
butchi
0
150
Sunday Math Party 31 - Collatz Problem and Integer Spiral
butchi
0
100
Sunday Math Party 30 - Notation Block Multi
butchi
0
130
Prime QK Anniversary 10 - Rule Renew
butchi
0
120
Sunday Math Party 29 - Joyo Bizarre Plane - Times
butchi
0
170
Sunday Math Party 27 Zodiac Jijo
butchi
1
130
Sunday Math Party 26 - Zodiac Power 2
butchi
1
360
Other Decks in Research
See All in Research
生成AIとうまく付き合うためのプロンプトエンジニアリング
yuri_ohashi
0
130
離散凸解析に基づく予測付き離散最適化手法 (IBIS '25)
taihei_oki
PRO
1
680
自動運転におけるデータ駆動型AIに対する安全性の考え方 / Safety Engineering for Data-Driven AI in Autonomous Driving Systems
ishikawafyu
0
130
AI in Enterprises - Java and Open Source to the Rescue
ivargrimstad
0
1.1k
世界モデルにおける分布外データ対応の方法論
koukyo1994
7
1.5k
Satellites Reveal Mobility: A Commuting Origin-destination Flow Generator for Global Cities
satai
3
500
Mamba-in-Mamba: Centralized Mamba-Cross-Scan in Tokenized Mamba Model for Hyperspectral Image Classification
satai
3
590
AIスパコン「さくらONE」の オブザーバビリティ / Observability for AI Supercomputer SAKURAONE
yuukit
2
1.2k
一般道の交通量減少と速度低下についての全国分析と熊本市におけるケーススタディ(20251122 土木計画学研究発表会)
trafficbrain
0
160
Combining Deep Learning and Street View Imagery to Map Smallholder Crop Types
satai
3
570
AIスーパーコンピュータにおけるLLM学習処理性能の計測と可観測性 / AI Supercomputer LLM Benchmarking and Observability
yuukit
1
650
令和最新技術で伝統掲示板を再構築: HonoX で作る型安全なスレッドフロート型掲示板 / かろっく@calloc134 - Hono Conference 2025
calloc134
0
550
Featured
See All Featured
Done Done
chrislema
186
16k
AI: The stuff that nobody shows you
jnunemaker
PRO
2
260
The agentic SEO stack - context over prompts
schlessera
0
640
Chrome DevTools: State of the Union 2024 - Debugging React & Beyond
addyosmani
10
1.1k
Practical Orchestrator
shlominoach
191
11k
Max Prin - Stacking Signals: How International SEO Comes Together (And Falls Apart)
techseoconnect
PRO
0
86
ピンチをチャンスに:未来をつくるプロダクトロードマップ #pmconf2020
aki_iinuma
128
55k
Building Experiences: Design Systems, User Experience, and Full Site Editing
marktimemedia
0
410
The Cost Of JavaScript in 2023
addyosmani
55
9.5k
Have SEOs Ruined the Internet? - User Awareness of SEO in 2025
akashhashmi
0
270
Everyday Curiosity
cassininazir
0
130
The Limits of Empathy - UXLibs8
cassininazir
1
220
Transcript
集合論理ベクトルによる ビット列のフィルタリング 岩淵 勇樹
何がしたいの? インスタンス(ビット列)を絞り込むフィルターを作り たい
着想 • ビット列は「0か1」の万能細胞から分化していると いう概念 • CSSのクラスの絞り込みが元のアイデア • 正規表現に近いかも
(オブジェクト指向的) クラスとは • オブジェクトの設計図にあたるもの。 • インスタンスという 具体的なオブジェクトの元となるもの。 • 抽象データ型。
(オブジェクト指向的)クラスとは Dog 名前: ? 耳: 2つ 目: 2つ 鼻: 1つ
足: 4本 毛の色: ? 鼻の色: ? a dog 名前: ポチ 耳: 2つ 目: 2つ 鼻: 1つ 足: 4本 毛の色: 金 鼻の色: 黒 a dog 名前: ゴン 耳: 2つ 目: 2つ 鼻: 1つ 足: 4本 毛の色: 茶 鼻の色: 茶 インスタンス化 インスタンス化 (「継承」という概念も重要ですが割愛)
class Dog() { (コンストラクタ関数) } var dog1 = new Dog();
var dog2 = new Dog(); (オブジェクト指向的) クラスとは クラス定義 インスタンス化 インスタンス化
(CSS的)クラスとは HTMLの装飾をする際に用いる、 装飾すべきHTML要素を絞り込むための種別 クラスなどを指定して絞り込む式のことを 「セレクタ」という
(CSS的)クラスとは .hoge .piyo { margin: 10px; color: red; } セレクタ
クラス プロパティ 値
(CSS的)クラスとは <html> <head></head> <body> <p class="class-1">強調!</p> <p class="class-2">小さい。</p> <p class="class-1
class-2">小さいけど強調、そして青! </p> </body> </html> HTML .class-1 { font-weight: bold; } .class-2 { font-size: small; } .class-1.class-2 { color: blue; } CSS 強調! 小さい。 小さいけど強調! ブラウザ表示
セレクタにも演算がある * すべての要素 E F 子孫 E > F 子要素
E + F 隣接 E ~ F 兄弟 :not 該当しない場合 :first-child 該当する要素が1番目の要素の場合 他にもいろいろ
(今回扱う)オレオレ クラスとは • クラスは不確定要素を持つビット列 • インスタンスは不確定要素を持たないビット列 • インスタンスは親となるクラスの部分集合 • クラスを乗算する(絞り込む)ことをフィルタリング
と呼ぶ
具体例 「偶数」 クラス: “***0” インスタンス: “0010”, “1010”, “1100”, … 「8以上の数」
クラス: “1***” インスタンス: “1000”, “1010”, “1111”, … →このような絞り込みを数値的に表したい
具体例 「8以上の偶数」 クラス: “1**0” インスタンス: “1000”, “1010”, “1110”, …
前提 {φ, θ, ρ, σ}(後述) の4値を扱う論理値集合のベク トルが1つの値 今回は4ビットを考える
語彙 V := {φ, θ, ρ, σ} ビットの値は φ =
{}, θ = {0}, ρ = {1}, σ = {0, 1}
加算表 ∪ φ θ ρ σ φ φ θ ρ
σ θ θ θ σ σ ρ ρ σ ρ σ σ σ σ σ σ
乗算表 ∩ φ θ ρ σ φ φ φ φ
σ θ φ θ φ θ ρ φ φ ρ φ σ φ θ φ σ
ベクトルの加算と乗算 W: = (b 0 ,b 1 ,b 2 ,b
3 ) | b i ∈ V x, y ∈ W x + y := (x 0 ∪y 0 , x 1 ∪y 1 , x 2 ∪y 2 , x 3 ∪y 3 ) (これ意図と違うっぽい) x × y := (x 0 ∩x 0 , x 1 ∩x 1 , x 2 ∩x 2 , x 3 ∩x 3 )
計算例 (φ, θ, θ, θ) + (σ, ρ, θ, φ)
= (σ, σ, θ, θ) (θ, σ, σ, ρ) × (θ, ρ, θ, φ) = (θ, ρ, θ, φ)
単位元、零元 単位元 Σ = (σ,σ,σ,σ) →オールパスフィルター a + Σ =
Σ a × Σ = a 零元 Φ = (φ, φ, φ, φ) →オールカットフィルター a + Φ = a a × Φ = Φ
フィルタリング インスタンスを抽象化: (θ, θ, θ, θ) + (θ, ρ, θ,
θ) = (θ, σ, θ, θ) オールパスフィルター (σ, σ, σ, θ) × (σ, σ, σ, σ) = (σ, σ, σ, θ)
絶対値 |x| := φを1つでも持っていたら0, それ以外は1 例: |(ρ, ρ, θ, ρ)|
= 1 |(ρ, φ, θ, ρ)| = 0
クラスとインスタンス(復習) • インスタンスはクラスの部分集合 • クラスは任意のW • インスタンスはWのうち、θ, ρのみで構成される もの •
クラスを乗算することをフィルタリングと呼ぶ
最初の例に立ち返る 「偶数」 クラス: (σ, σ, σ, θ) インスタンス: (θ, θ,
ρ, θ), (ρ, θ, ρ, θ), (ρ, ρ, θ, θ), … ダメな例: (ρ, ρ, θ, ρ) →|(σ, σ, σ, θ)×(ρ, ρ, θ, ρ)| = |(ρ, ρ, θ, φ)| = 0
最初の例に立ち返る 「8以上の数」 クラス: (ρ, σ, σ, σ) インスタンス: (ρ, θ,
θ, θ), (ρ, θ, ρ, θ), (ρ, ρ, ρ, ρ), … ダメな例: (θ, ρ, θ, ρ) →|(ρ, σ, σ, σ)×(θ, ρ, θ, ρ)| = |(φ, ρ, θ, ρ)| = 0
課題 無限ビットを扱う インスタンスからクラスを作る(推定する) 機械学習 01列ではなく文字列を語として扱う