Lock in $30 Savings on PRO—Offer Ends Soon! ⏳
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Math Cafe vol. 1 - Filtering Bit Sequence by Se...
Search
IWABUCHI Yu(u)ki butchi
March 28, 2015
Research
0
98
Math Cafe vol. 1 - Filtering Bit Sequence by Set Logical Vector
第1回数学カフェ「集合論理ベクトルによるビット列のフィルタリング」
IWABUCHI Yu(u)ki butchi
March 28, 2015
Tweet
Share
More Decks by IWABUCHI Yu(u)ki butchi
See All by IWABUCHI Yu(u)ki butchi
WBA Monozukuri 2025-04-20 Nothing Response AI
butchi
0
31
SIG-MATHEMATICA JAPAN - Log-Log Polar Discrete Plot
butchi
0
140
Sunday Math Party 31 - Collatz Problem and Integer Spiral
butchi
0
91
Sunday Math Party 30 - Notation Block Multi
butchi
0
130
Prime QK Anniversary 10 - Rule Renew
butchi
0
110
Sunday Math Party 29 - Joyo Bizarre Plane - Times
butchi
0
160
Sunday Math Party 27 Zodiac Jijo
butchi
0
120
Sunday Math Party 26 - Zodiac Power 2
butchi
0
340
Science Cafe 2022-11-26 - Automatic Illustration
butchi
0
130
Other Decks in Research
See All in Research
超高速データサイエンス
matsui_528
1
220
大学見本市2025 JSTさきがけ事業セミナー「顔の見えないセンシング技術:多様なセンサにもとづく個人情報に配慮した人物状態推定」
miso2024
0
180
AIグラフィックデザインの進化:断片から統合(One Piece)へ / From Fragment to One Piece: A Survey on AI-Driven Graphic Design
shunk031
0
560
snlp2025_prevent_llm_spikes
takase
0
410
MetaEarth: A Generative Foundation Model for Global-Scale Remote Sensing Image Generation
satai
4
440
[IBIS 2025] 深層基盤モデルのための強化学習驚きから理論にもとづく納得へ
akifumi_wachi
13
7.1k
AWSで実現した大規模日本語VLM学習用データセット "MOMIJI" 構築パイプライン/buiding-momiji
studio_graph
2
900
VectorLLM: Human-like Extraction of Structured Building Contours via Multimodal LLMs
satai
4
450
とあるSREの博士「過程」 / A Certain SRE’s Ph.D. Journey
yuukit
11
4.9k
心理言語学の視点から再考する言語モデルの学習過程
chemical_tree
2
690
Language Models Are Implicitly Continuous
eumesy
PRO
0
340
Open Gateway 5GC利用への期待と不安
stellarcraft
2
160
Featured
See All Featured
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
11
960
10 Git Anti Patterns You Should be Aware of
lemiorhan
PRO
659
61k
Sharpening the Axe: The Primacy of Toolmaking
bcantrill
46
2.6k
Six Lessons from altMBA
skipperchong
29
4.1k
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
31
9.8k
RailsConf 2023
tenderlove
30
1.3k
How to train your dragon (web standard)
notwaldorf
97
6.4k
Bootstrapping a Software Product
garrettdimon
PRO
307
110k
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
285
14k
Easily Structure & Communicate Ideas using Wireframe
afnizarnur
194
17k
How To Stay Up To Date on Web Technology
chriscoyier
791
250k
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
132
19k
Transcript
集合論理ベクトルによる ビット列のフィルタリング 岩淵 勇樹
何がしたいの? インスタンス(ビット列)を絞り込むフィルターを作り たい
着想 • ビット列は「0か1」の万能細胞から分化していると いう概念 • CSSのクラスの絞り込みが元のアイデア • 正規表現に近いかも
(オブジェクト指向的) クラスとは • オブジェクトの設計図にあたるもの。 • インスタンスという 具体的なオブジェクトの元となるもの。 • 抽象データ型。
(オブジェクト指向的)クラスとは Dog 名前: ? 耳: 2つ 目: 2つ 鼻: 1つ
足: 4本 毛の色: ? 鼻の色: ? a dog 名前: ポチ 耳: 2つ 目: 2つ 鼻: 1つ 足: 4本 毛の色: 金 鼻の色: 黒 a dog 名前: ゴン 耳: 2つ 目: 2つ 鼻: 1つ 足: 4本 毛の色: 茶 鼻の色: 茶 インスタンス化 インスタンス化 (「継承」という概念も重要ですが割愛)
class Dog() { (コンストラクタ関数) } var dog1 = new Dog();
var dog2 = new Dog(); (オブジェクト指向的) クラスとは クラス定義 インスタンス化 インスタンス化
(CSS的)クラスとは HTMLの装飾をする際に用いる、 装飾すべきHTML要素を絞り込むための種別 クラスなどを指定して絞り込む式のことを 「セレクタ」という
(CSS的)クラスとは .hoge .piyo { margin: 10px; color: red; } セレクタ
クラス プロパティ 値
(CSS的)クラスとは <html> <head></head> <body> <p class="class-1">強調!</p> <p class="class-2">小さい。</p> <p class="class-1
class-2">小さいけど強調、そして青! </p> </body> </html> HTML .class-1 { font-weight: bold; } .class-2 { font-size: small; } .class-1.class-2 { color: blue; } CSS 強調! 小さい。 小さいけど強調! ブラウザ表示
セレクタにも演算がある * すべての要素 E F 子孫 E > F 子要素
E + F 隣接 E ~ F 兄弟 :not 該当しない場合 :first-child 該当する要素が1番目の要素の場合 他にもいろいろ
(今回扱う)オレオレ クラスとは • クラスは不確定要素を持つビット列 • インスタンスは不確定要素を持たないビット列 • インスタンスは親となるクラスの部分集合 • クラスを乗算する(絞り込む)ことをフィルタリング
と呼ぶ
具体例 「偶数」 クラス: “***0” インスタンス: “0010”, “1010”, “1100”, … 「8以上の数」
クラス: “1***” インスタンス: “1000”, “1010”, “1111”, … →このような絞り込みを数値的に表したい
具体例 「8以上の偶数」 クラス: “1**0” インスタンス: “1000”, “1010”, “1110”, …
前提 {φ, θ, ρ, σ}(後述) の4値を扱う論理値集合のベク トルが1つの値 今回は4ビットを考える
語彙 V := {φ, θ, ρ, σ} ビットの値は φ =
{}, θ = {0}, ρ = {1}, σ = {0, 1}
加算表 ∪ φ θ ρ σ φ φ θ ρ
σ θ θ θ σ σ ρ ρ σ ρ σ σ σ σ σ σ
乗算表 ∩ φ θ ρ σ φ φ φ φ
σ θ φ θ φ θ ρ φ φ ρ φ σ φ θ φ σ
ベクトルの加算と乗算 W: = (b 0 ,b 1 ,b 2 ,b
3 ) | b i ∈ V x, y ∈ W x + y := (x 0 ∪y 0 , x 1 ∪y 1 , x 2 ∪y 2 , x 3 ∪y 3 ) (これ意図と違うっぽい) x × y := (x 0 ∩x 0 , x 1 ∩x 1 , x 2 ∩x 2 , x 3 ∩x 3 )
計算例 (φ, θ, θ, θ) + (σ, ρ, θ, φ)
= (σ, σ, θ, θ) (θ, σ, σ, ρ) × (θ, ρ, θ, φ) = (θ, ρ, θ, φ)
単位元、零元 単位元 Σ = (σ,σ,σ,σ) →オールパスフィルター a + Σ =
Σ a × Σ = a 零元 Φ = (φ, φ, φ, φ) →オールカットフィルター a + Φ = a a × Φ = Φ
フィルタリング インスタンスを抽象化: (θ, θ, θ, θ) + (θ, ρ, θ,
θ) = (θ, σ, θ, θ) オールパスフィルター (σ, σ, σ, θ) × (σ, σ, σ, σ) = (σ, σ, σ, θ)
絶対値 |x| := φを1つでも持っていたら0, それ以外は1 例: |(ρ, ρ, θ, ρ)|
= 1 |(ρ, φ, θ, ρ)| = 0
クラスとインスタンス(復習) • インスタンスはクラスの部分集合 • クラスは任意のW • インスタンスはWのうち、θ, ρのみで構成される もの •
クラスを乗算することをフィルタリングと呼ぶ
最初の例に立ち返る 「偶数」 クラス: (σ, σ, σ, θ) インスタンス: (θ, θ,
ρ, θ), (ρ, θ, ρ, θ), (ρ, ρ, θ, θ), … ダメな例: (ρ, ρ, θ, ρ) →|(σ, σ, σ, θ)×(ρ, ρ, θ, ρ)| = |(ρ, ρ, θ, φ)| = 0
最初の例に立ち返る 「8以上の数」 クラス: (ρ, σ, σ, σ) インスタンス: (ρ, θ,
θ, θ), (ρ, θ, ρ, θ), (ρ, ρ, ρ, ρ), … ダメな例: (θ, ρ, θ, ρ) →|(ρ, σ, σ, σ)×(θ, ρ, θ, ρ)| = |(φ, ρ, θ, ρ)| = 0
課題 無限ビットを扱う インスタンスからクラスを作る(推定する) 機械学習 01列ではなく文字列を語として扱う