$30 off During Our Annual Pro Sale. View Details »
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Math Cafe vol. 1 - Filtering Bit Sequence by Se...
Search
IWABUCHI Yu(u)ki butchi
March 28, 2015
Research
0
99
Math Cafe vol. 1 - Filtering Bit Sequence by Set Logical Vector
第1回数学カフェ「集合論理ベクトルによるビット列のフィルタリング」
IWABUCHI Yu(u)ki butchi
March 28, 2015
Tweet
Share
More Decks by IWABUCHI Yu(u)ki butchi
See All by IWABUCHI Yu(u)ki butchi
WBA Monozukuri 2025-04-20 Nothing Response AI
butchi
0
35
SIG-MATHEMATICA JAPAN - Log-Log Polar Discrete Plot
butchi
0
140
Sunday Math Party 31 - Collatz Problem and Integer Spiral
butchi
0
94
Sunday Math Party 30 - Notation Block Multi
butchi
0
130
Prime QK Anniversary 10 - Rule Renew
butchi
0
110
Sunday Math Party 29 - Joyo Bizarre Plane - Times
butchi
0
160
Sunday Math Party 27 Zodiac Jijo
butchi
1
120
Sunday Math Party 26 - Zodiac Power 2
butchi
1
350
Science Cafe 2022-11-26 - Automatic Illustration
butchi
0
140
Other Decks in Research
See All in Research
Mamba-in-Mamba: Centralized Mamba-Cross-Scan in Tokenized Mamba Model for Hyperspectral Image Classification
satai
3
290
不確実性下における目的と手段の統合的探索に向けた連続腕バンディットの応用 / iot70_gp_rff_mab
monochromegane
2
250
[Devfest Incheon 2025] 모두를 위한 친절한 언어모델(LLM) 학습 가이드
beomi
2
1k
SREのためのテレメトリー技術の探究 / Telemetry for SRE
yuukit
13
2.5k
データサイエンティストをめぐる環境の違い2025年版〈一般ビジネスパーソン調査の国際比較〉
datascientistsociety
PRO
0
280
投資戦略202508
pw
0
580
論文紹介:Safety Alignment Should be Made More Than Just a Few Tokens Deep
kazutoshishinoda
0
150
LLM-jp-3 and beyond: Training Large Language Models
odashi
1
710
Panopticon: Advancing Any-Sensor Foundation Models for Earth Observation
satai
3
410
[論文紹介] Intuitive Fine-Tuning
ryou0634
0
160
論文紹介: ReGenesis: LLMs can Grow into Reasoning Generalists via Self-Improvement
hisaokatsumi
0
140
CoRL2025速報
rpc
3
3.6k
Featured
See All Featured
Fireside Chat
paigeccino
41
3.7k
The Psychology of Web Performance [Beyond Tellerrand 2023]
tammyeverts
49
3.2k
ピンチをチャンスに:未来をつくるプロダクトロードマップ #pmconf2020
aki_iinuma
128
54k
StorybookのUI Testing Handbookを読んだ
zakiyama
31
6.5k
Balancing Empowerment & Direction
lara
5
800
What's in a price? How to price your products and services
michaelherold
246
13k
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
12
980
[RailsConf 2023] Rails as a piece of cake
palkan
58
6.2k
No one is an island. Learnings from fostering a developers community.
thoeni
21
3.6k
The Invisible Side of Design
smashingmag
302
51k
Reflections from 52 weeks, 52 projects
jeffersonlam
355
21k
The Cult of Friendly URLs
andyhume
79
6.7k
Transcript
集合論理ベクトルによる ビット列のフィルタリング 岩淵 勇樹
何がしたいの? インスタンス(ビット列)を絞り込むフィルターを作り たい
着想 • ビット列は「0か1」の万能細胞から分化していると いう概念 • CSSのクラスの絞り込みが元のアイデア • 正規表現に近いかも
(オブジェクト指向的) クラスとは • オブジェクトの設計図にあたるもの。 • インスタンスという 具体的なオブジェクトの元となるもの。 • 抽象データ型。
(オブジェクト指向的)クラスとは Dog 名前: ? 耳: 2つ 目: 2つ 鼻: 1つ
足: 4本 毛の色: ? 鼻の色: ? a dog 名前: ポチ 耳: 2つ 目: 2つ 鼻: 1つ 足: 4本 毛の色: 金 鼻の色: 黒 a dog 名前: ゴン 耳: 2つ 目: 2つ 鼻: 1つ 足: 4本 毛の色: 茶 鼻の色: 茶 インスタンス化 インスタンス化 (「継承」という概念も重要ですが割愛)
class Dog() { (コンストラクタ関数) } var dog1 = new Dog();
var dog2 = new Dog(); (オブジェクト指向的) クラスとは クラス定義 インスタンス化 インスタンス化
(CSS的)クラスとは HTMLの装飾をする際に用いる、 装飾すべきHTML要素を絞り込むための種別 クラスなどを指定して絞り込む式のことを 「セレクタ」という
(CSS的)クラスとは .hoge .piyo { margin: 10px; color: red; } セレクタ
クラス プロパティ 値
(CSS的)クラスとは <html> <head></head> <body> <p class="class-1">強調!</p> <p class="class-2">小さい。</p> <p class="class-1
class-2">小さいけど強調、そして青! </p> </body> </html> HTML .class-1 { font-weight: bold; } .class-2 { font-size: small; } .class-1.class-2 { color: blue; } CSS 強調! 小さい。 小さいけど強調! ブラウザ表示
セレクタにも演算がある * すべての要素 E F 子孫 E > F 子要素
E + F 隣接 E ~ F 兄弟 :not 該当しない場合 :first-child 該当する要素が1番目の要素の場合 他にもいろいろ
(今回扱う)オレオレ クラスとは • クラスは不確定要素を持つビット列 • インスタンスは不確定要素を持たないビット列 • インスタンスは親となるクラスの部分集合 • クラスを乗算する(絞り込む)ことをフィルタリング
と呼ぶ
具体例 「偶数」 クラス: “***0” インスタンス: “0010”, “1010”, “1100”, … 「8以上の数」
クラス: “1***” インスタンス: “1000”, “1010”, “1111”, … →このような絞り込みを数値的に表したい
具体例 「8以上の偶数」 クラス: “1**0” インスタンス: “1000”, “1010”, “1110”, …
前提 {φ, θ, ρ, σ}(後述) の4値を扱う論理値集合のベク トルが1つの値 今回は4ビットを考える
語彙 V := {φ, θ, ρ, σ} ビットの値は φ =
{}, θ = {0}, ρ = {1}, σ = {0, 1}
加算表 ∪ φ θ ρ σ φ φ θ ρ
σ θ θ θ σ σ ρ ρ σ ρ σ σ σ σ σ σ
乗算表 ∩ φ θ ρ σ φ φ φ φ
σ θ φ θ φ θ ρ φ φ ρ φ σ φ θ φ σ
ベクトルの加算と乗算 W: = (b 0 ,b 1 ,b 2 ,b
3 ) | b i ∈ V x, y ∈ W x + y := (x 0 ∪y 0 , x 1 ∪y 1 , x 2 ∪y 2 , x 3 ∪y 3 ) (これ意図と違うっぽい) x × y := (x 0 ∩x 0 , x 1 ∩x 1 , x 2 ∩x 2 , x 3 ∩x 3 )
計算例 (φ, θ, θ, θ) + (σ, ρ, θ, φ)
= (σ, σ, θ, θ) (θ, σ, σ, ρ) × (θ, ρ, θ, φ) = (θ, ρ, θ, φ)
単位元、零元 単位元 Σ = (σ,σ,σ,σ) →オールパスフィルター a + Σ =
Σ a × Σ = a 零元 Φ = (φ, φ, φ, φ) →オールカットフィルター a + Φ = a a × Φ = Φ
フィルタリング インスタンスを抽象化: (θ, θ, θ, θ) + (θ, ρ, θ,
θ) = (θ, σ, θ, θ) オールパスフィルター (σ, σ, σ, θ) × (σ, σ, σ, σ) = (σ, σ, σ, θ)
絶対値 |x| := φを1つでも持っていたら0, それ以外は1 例: |(ρ, ρ, θ, ρ)|
= 1 |(ρ, φ, θ, ρ)| = 0
クラスとインスタンス(復習) • インスタンスはクラスの部分集合 • クラスは任意のW • インスタンスはWのうち、θ, ρのみで構成される もの •
クラスを乗算することをフィルタリングと呼ぶ
最初の例に立ち返る 「偶数」 クラス: (σ, σ, σ, θ) インスタンス: (θ, θ,
ρ, θ), (ρ, θ, ρ, θ), (ρ, ρ, θ, θ), … ダメな例: (ρ, ρ, θ, ρ) →|(σ, σ, σ, θ)×(ρ, ρ, θ, ρ)| = |(ρ, ρ, θ, φ)| = 0
最初の例に立ち返る 「8以上の数」 クラス: (ρ, σ, σ, σ) インスタンス: (ρ, θ,
θ, θ), (ρ, θ, ρ, θ), (ρ, ρ, ρ, ρ), … ダメな例: (θ, ρ, θ, ρ) →|(ρ, σ, σ, σ)×(θ, ρ, θ, ρ)| = |(φ, ρ, θ, ρ)| = 0
課題 無限ビットを扱う インスタンスからクラスを作る(推定する) 機械学習 01列ではなく文字列を語として扱う