Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Math Cafe vol. 1 - Filtering Bit Sequence by Se...
Search
IWABUCHI Yu(u)ki butchi
March 28, 2015
Research
0
97
Math Cafe vol. 1 - Filtering Bit Sequence by Set Logical Vector
第1回数学カフェ「集合論理ベクトルによるビット列のフィルタリング」
IWABUCHI Yu(u)ki butchi
March 28, 2015
Tweet
Share
More Decks by IWABUCHI Yu(u)ki butchi
See All by IWABUCHI Yu(u)ki butchi
WBA Monozukuri 2025-04-20 Nothing Response AI
butchi
0
24
SIG-MATHEMATICA JAPAN - Log-Log Polar Discrete Plot
butchi
0
130
Sunday Math Party 31 - Collatz Problem and Integer Spiral
butchi
0
87
Sunday Math Party 30 - Notation Block Multi
butchi
0
120
Prime QK Anniversary 10 - Rule Renew
butchi
0
100
Sunday Math Party 29 - Joyo Bizarre Plane - Times
butchi
0
160
Sunday Math Party 27 Zodiac Jijo
butchi
0
110
Sunday Math Party 26 - Zodiac Power 2
butchi
0
330
Science Cafe 2022-11-26 - Automatic Illustration
butchi
0
130
Other Decks in Research
See All in Research
長期・短期メモリを活用したエージェントの個別最適化
isidaitc
0
190
Language Models Are Implicitly Continuous
eumesy
PRO
0
300
Minimax and Bayes Optimal Best-arm Identification: Adaptive Experimental Design for Treatment Choice
masakat0
0
180
スキマバイトサービスにおける現場起点でのデザインアプローチ
yoshioshingyouji
0
250
EarthDial: Turning Multi-sensory Earth Observations to Interactive Dialogues
satai
3
230
不確実性下における目的と手段の統合的探索に向けた連続腕バンディットの応用 / iot70_gp_rff_mab
monochromegane
2
190
2025年度人工知能学会全国大会チュートリアル講演「深層基盤モデルの数理」
taiji_suzuki
25
19k
投資戦略202508
pw
0
570
Stealing LUKS Keys via TPM and UUID Spoofing in 10 Minutes - BSides 2025
anykeyshik
0
140
AlphaEarth Foundations: An embedding field model for accurate and efficient global mapping from sparse label data
satai
3
350
AIグラフィックデザインの進化:断片から統合(One Piece)へ / From Fragment to One Piece: A Survey on AI-Driven Graphic Design
shunk031
0
500
RHO-1: Not All Tokens Are What You Need
sansan_randd
1
190
Featured
See All Featured
YesSQL, Process and Tooling at Scale
rocio
173
14k
Build The Right Thing And Hit Your Dates
maggiecrowley
37
2.9k
ReactJS: Keep Simple. Everything can be a component!
pedronauck
667
120k
The Cult of Friendly URLs
andyhume
79
6.6k
Designing for Performance
lara
610
69k
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
508
140k
Scaling GitHub
holman
463
140k
No one is an island. Learnings from fostering a developers community.
thoeni
21
3.5k
Raft: Consensus for Rubyists
vanstee
140
7.1k
Mobile First: as difficult as doing things right
swwweet
224
10k
How GitHub (no longer) Works
holman
315
140k
Code Review Best Practice
trishagee
72
19k
Transcript
集合論理ベクトルによる ビット列のフィルタリング 岩淵 勇樹
何がしたいの? インスタンス(ビット列)を絞り込むフィルターを作り たい
着想 • ビット列は「0か1」の万能細胞から分化していると いう概念 • CSSのクラスの絞り込みが元のアイデア • 正規表現に近いかも
(オブジェクト指向的) クラスとは • オブジェクトの設計図にあたるもの。 • インスタンスという 具体的なオブジェクトの元となるもの。 • 抽象データ型。
(オブジェクト指向的)クラスとは Dog 名前: ? 耳: 2つ 目: 2つ 鼻: 1つ
足: 4本 毛の色: ? 鼻の色: ? a dog 名前: ポチ 耳: 2つ 目: 2つ 鼻: 1つ 足: 4本 毛の色: 金 鼻の色: 黒 a dog 名前: ゴン 耳: 2つ 目: 2つ 鼻: 1つ 足: 4本 毛の色: 茶 鼻の色: 茶 インスタンス化 インスタンス化 (「継承」という概念も重要ですが割愛)
class Dog() { (コンストラクタ関数) } var dog1 = new Dog();
var dog2 = new Dog(); (オブジェクト指向的) クラスとは クラス定義 インスタンス化 インスタンス化
(CSS的)クラスとは HTMLの装飾をする際に用いる、 装飾すべきHTML要素を絞り込むための種別 クラスなどを指定して絞り込む式のことを 「セレクタ」という
(CSS的)クラスとは .hoge .piyo { margin: 10px; color: red; } セレクタ
クラス プロパティ 値
(CSS的)クラスとは <html> <head></head> <body> <p class="class-1">強調!</p> <p class="class-2">小さい。</p> <p class="class-1
class-2">小さいけど強調、そして青! </p> </body> </html> HTML .class-1 { font-weight: bold; } .class-2 { font-size: small; } .class-1.class-2 { color: blue; } CSS 強調! 小さい。 小さいけど強調! ブラウザ表示
セレクタにも演算がある * すべての要素 E F 子孫 E > F 子要素
E + F 隣接 E ~ F 兄弟 :not 該当しない場合 :first-child 該当する要素が1番目の要素の場合 他にもいろいろ
(今回扱う)オレオレ クラスとは • クラスは不確定要素を持つビット列 • インスタンスは不確定要素を持たないビット列 • インスタンスは親となるクラスの部分集合 • クラスを乗算する(絞り込む)ことをフィルタリング
と呼ぶ
具体例 「偶数」 クラス: “***0” インスタンス: “0010”, “1010”, “1100”, … 「8以上の数」
クラス: “1***” インスタンス: “1000”, “1010”, “1111”, … →このような絞り込みを数値的に表したい
具体例 「8以上の偶数」 クラス: “1**0” インスタンス: “1000”, “1010”, “1110”, …
前提 {φ, θ, ρ, σ}(後述) の4値を扱う論理値集合のベク トルが1つの値 今回は4ビットを考える
語彙 V := {φ, θ, ρ, σ} ビットの値は φ =
{}, θ = {0}, ρ = {1}, σ = {0, 1}
加算表 ∪ φ θ ρ σ φ φ θ ρ
σ θ θ θ σ σ ρ ρ σ ρ σ σ σ σ σ σ
乗算表 ∩ φ θ ρ σ φ φ φ φ
σ θ φ θ φ θ ρ φ φ ρ φ σ φ θ φ σ
ベクトルの加算と乗算 W: = (b 0 ,b 1 ,b 2 ,b
3 ) | b i ∈ V x, y ∈ W x + y := (x 0 ∪y 0 , x 1 ∪y 1 , x 2 ∪y 2 , x 3 ∪y 3 ) (これ意図と違うっぽい) x × y := (x 0 ∩x 0 , x 1 ∩x 1 , x 2 ∩x 2 , x 3 ∩x 3 )
計算例 (φ, θ, θ, θ) + (σ, ρ, θ, φ)
= (σ, σ, θ, θ) (θ, σ, σ, ρ) × (θ, ρ, θ, φ) = (θ, ρ, θ, φ)
単位元、零元 単位元 Σ = (σ,σ,σ,σ) →オールパスフィルター a + Σ =
Σ a × Σ = a 零元 Φ = (φ, φ, φ, φ) →オールカットフィルター a + Φ = a a × Φ = Φ
フィルタリング インスタンスを抽象化: (θ, θ, θ, θ) + (θ, ρ, θ,
θ) = (θ, σ, θ, θ) オールパスフィルター (σ, σ, σ, θ) × (σ, σ, σ, σ) = (σ, σ, σ, θ)
絶対値 |x| := φを1つでも持っていたら0, それ以外は1 例: |(ρ, ρ, θ, ρ)|
= 1 |(ρ, φ, θ, ρ)| = 0
クラスとインスタンス(復習) • インスタンスはクラスの部分集合 • クラスは任意のW • インスタンスはWのうち、θ, ρのみで構成される もの •
クラスを乗算することをフィルタリングと呼ぶ
最初の例に立ち返る 「偶数」 クラス: (σ, σ, σ, θ) インスタンス: (θ, θ,
ρ, θ), (ρ, θ, ρ, θ), (ρ, ρ, θ, θ), … ダメな例: (ρ, ρ, θ, ρ) →|(σ, σ, σ, θ)×(ρ, ρ, θ, ρ)| = |(ρ, ρ, θ, φ)| = 0
最初の例に立ち返る 「8以上の数」 クラス: (ρ, σ, σ, σ) インスタンス: (ρ, θ,
θ, θ), (ρ, θ, ρ, θ), (ρ, ρ, ρ, ρ), … ダメな例: (θ, ρ, θ, ρ) →|(ρ, σ, σ, σ)×(θ, ρ, θ, ρ)| = |(φ, ρ, θ, ρ)| = 0
課題 無限ビットを扱う インスタンスからクラスを作る(推定する) 機械学習 01列ではなく文字列を語として扱う