$30 off During Our Annual Pro Sale. View Details »
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Math Cafe vol. 1 - Filtering Bit Sequence by Se...
Search
IWABUCHI Yu(u)ki butchi
March 28, 2015
Research
0
100
Math Cafe vol. 1 - Filtering Bit Sequence by Set Logical Vector
第1回数学カフェ「集合論理ベクトルによるビット列のフィルタリング」
IWABUCHI Yu(u)ki butchi
March 28, 2015
Tweet
Share
More Decks by IWABUCHI Yu(u)ki butchi
See All by IWABUCHI Yu(u)ki butchi
WBA Monozukuri 2025-04-20 Nothing Response AI
butchi
0
35
SIG-MATHEMATICA JAPAN - Log-Log Polar Discrete Plot
butchi
0
140
Sunday Math Party 31 - Collatz Problem and Integer Spiral
butchi
0
94
Sunday Math Party 30 - Notation Block Multi
butchi
0
130
Prime QK Anniversary 10 - Rule Renew
butchi
0
110
Sunday Math Party 29 - Joyo Bizarre Plane - Times
butchi
0
160
Sunday Math Party 27 Zodiac Jijo
butchi
1
120
Sunday Math Party 26 - Zodiac Power 2
butchi
1
350
Science Cafe 2022-11-26 - Automatic Illustration
butchi
0
140
Other Decks in Research
See All in Research
AlphaEarth Foundations: An embedding field model for accurate and efficient global mapping from sparse label data
satai
3
590
AWSで実現した大規模日本語VLM学習用データセット "MOMIJI" 構築パイプライン/buiding-momiji
studio_graph
2
1.1k
視覚から身体性を持つAIへ: 巧緻な動作の3次元理解
tkhkaeio
0
120
Open Gateway 5GC利用への期待と不安
stellarcraft
2
170
データサイエンティストをめぐる環境の違い2025年版〈一般ビジネスパーソン調査の国際比較〉
datascientistsociety
PRO
0
330
Tiaccoon: Unified Access Control with Multiple Transports in Container Networks
hiroyaonoe
0
190
ロボット学習における大規模検索技術の展開と応用
denkiwakame
1
180
思いつきが武器になる:研究というゲームを始めよう / Ideas Are Your Equipments : Let the Game of Research Begin!
ks91
PRO
0
110
Agentic AI フレームワーク戦略白書 (2025年度版)
mickey_kubo
1
110
"主観で終わらせない"定性データ活用 ― プロダクトディスカバリーを加速させるインサイトマネジメント / Utilizing qualitative data that "doesn't end with subjectivity" - Insight management that accelerates product discovery
kaminashi
15
17k
若手研究者が国際会議(例えばIROS)でワークショップを企画するメリットと成功法!
tanichu
0
130
自動運転におけるデータ駆動型AIに対する安全性の考え方 / Safety Engineering for Data-Driven AI in Autonomous Driving Systems
ishikawafyu
0
110
Featured
See All Featured
Leo the Paperboy
mayatellez
0
1.2k
Skip the Path - Find Your Career Trail
mkilby
0
27
Accessibility Awareness
sabderemane
0
24
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
52
5.8k
Bootstrapping a Software Product
garrettdimon
PRO
307
120k
Collaborative Software Design: How to facilitate domain modelling decisions
baasie
0
97
Ethics towards AI in product and experience design
skipperchong
1
140
Effective software design: The role of men in debugging patriarchy in IT @ Voxxed Days AMS
baasie
0
170
From Legacy to Launchpad: Building Startup-Ready Communities
dugsong
0
110
Making the Leap to Tech Lead
cromwellryan
135
9.7k
A Modern Web Designer's Workflow
chriscoyier
698
190k
Navigating the moral maze — ethical principles for Al-driven product design
skipperchong
1
210
Transcript
集合論理ベクトルによる ビット列のフィルタリング 岩淵 勇樹
何がしたいの? インスタンス(ビット列)を絞り込むフィルターを作り たい
着想 • ビット列は「0か1」の万能細胞から分化していると いう概念 • CSSのクラスの絞り込みが元のアイデア • 正規表現に近いかも
(オブジェクト指向的) クラスとは • オブジェクトの設計図にあたるもの。 • インスタンスという 具体的なオブジェクトの元となるもの。 • 抽象データ型。
(オブジェクト指向的)クラスとは Dog 名前: ? 耳: 2つ 目: 2つ 鼻: 1つ
足: 4本 毛の色: ? 鼻の色: ? a dog 名前: ポチ 耳: 2つ 目: 2つ 鼻: 1つ 足: 4本 毛の色: 金 鼻の色: 黒 a dog 名前: ゴン 耳: 2つ 目: 2つ 鼻: 1つ 足: 4本 毛の色: 茶 鼻の色: 茶 インスタンス化 インスタンス化 (「継承」という概念も重要ですが割愛)
class Dog() { (コンストラクタ関数) } var dog1 = new Dog();
var dog2 = new Dog(); (オブジェクト指向的) クラスとは クラス定義 インスタンス化 インスタンス化
(CSS的)クラスとは HTMLの装飾をする際に用いる、 装飾すべきHTML要素を絞り込むための種別 クラスなどを指定して絞り込む式のことを 「セレクタ」という
(CSS的)クラスとは .hoge .piyo { margin: 10px; color: red; } セレクタ
クラス プロパティ 値
(CSS的)クラスとは <html> <head></head> <body> <p class="class-1">強調!</p> <p class="class-2">小さい。</p> <p class="class-1
class-2">小さいけど強調、そして青! </p> </body> </html> HTML .class-1 { font-weight: bold; } .class-2 { font-size: small; } .class-1.class-2 { color: blue; } CSS 強調! 小さい。 小さいけど強調! ブラウザ表示
セレクタにも演算がある * すべての要素 E F 子孫 E > F 子要素
E + F 隣接 E ~ F 兄弟 :not 該当しない場合 :first-child 該当する要素が1番目の要素の場合 他にもいろいろ
(今回扱う)オレオレ クラスとは • クラスは不確定要素を持つビット列 • インスタンスは不確定要素を持たないビット列 • インスタンスは親となるクラスの部分集合 • クラスを乗算する(絞り込む)ことをフィルタリング
と呼ぶ
具体例 「偶数」 クラス: “***0” インスタンス: “0010”, “1010”, “1100”, … 「8以上の数」
クラス: “1***” インスタンス: “1000”, “1010”, “1111”, … →このような絞り込みを数値的に表したい
具体例 「8以上の偶数」 クラス: “1**0” インスタンス: “1000”, “1010”, “1110”, …
前提 {φ, θ, ρ, σ}(後述) の4値を扱う論理値集合のベク トルが1つの値 今回は4ビットを考える
語彙 V := {φ, θ, ρ, σ} ビットの値は φ =
{}, θ = {0}, ρ = {1}, σ = {0, 1}
加算表 ∪ φ θ ρ σ φ φ θ ρ
σ θ θ θ σ σ ρ ρ σ ρ σ σ σ σ σ σ
乗算表 ∩ φ θ ρ σ φ φ φ φ
σ θ φ θ φ θ ρ φ φ ρ φ σ φ θ φ σ
ベクトルの加算と乗算 W: = (b 0 ,b 1 ,b 2 ,b
3 ) | b i ∈ V x, y ∈ W x + y := (x 0 ∪y 0 , x 1 ∪y 1 , x 2 ∪y 2 , x 3 ∪y 3 ) (これ意図と違うっぽい) x × y := (x 0 ∩x 0 , x 1 ∩x 1 , x 2 ∩x 2 , x 3 ∩x 3 )
計算例 (φ, θ, θ, θ) + (σ, ρ, θ, φ)
= (σ, σ, θ, θ) (θ, σ, σ, ρ) × (θ, ρ, θ, φ) = (θ, ρ, θ, φ)
単位元、零元 単位元 Σ = (σ,σ,σ,σ) →オールパスフィルター a + Σ =
Σ a × Σ = a 零元 Φ = (φ, φ, φ, φ) →オールカットフィルター a + Φ = a a × Φ = Φ
フィルタリング インスタンスを抽象化: (θ, θ, θ, θ) + (θ, ρ, θ,
θ) = (θ, σ, θ, θ) オールパスフィルター (σ, σ, σ, θ) × (σ, σ, σ, σ) = (σ, σ, σ, θ)
絶対値 |x| := φを1つでも持っていたら0, それ以外は1 例: |(ρ, ρ, θ, ρ)|
= 1 |(ρ, φ, θ, ρ)| = 0
クラスとインスタンス(復習) • インスタンスはクラスの部分集合 • クラスは任意のW • インスタンスはWのうち、θ, ρのみで構成される もの •
クラスを乗算することをフィルタリングと呼ぶ
最初の例に立ち返る 「偶数」 クラス: (σ, σ, σ, θ) インスタンス: (θ, θ,
ρ, θ), (ρ, θ, ρ, θ), (ρ, ρ, θ, θ), … ダメな例: (ρ, ρ, θ, ρ) →|(σ, σ, σ, θ)×(ρ, ρ, θ, ρ)| = |(ρ, ρ, θ, φ)| = 0
最初の例に立ち返る 「8以上の数」 クラス: (ρ, σ, σ, σ) インスタンス: (ρ, θ,
θ, θ), (ρ, θ, ρ, θ), (ρ, ρ, ρ, ρ), … ダメな例: (θ, ρ, θ, ρ) →|(ρ, σ, σ, σ)×(θ, ρ, θ, ρ)| = |(φ, ρ, θ, ρ)| = 0
課題 無限ビットを扱う インスタンスからクラスを作る(推定する) 機械学習 01列ではなく文字列を語として扱う