Upgrade to Pro — share decks privately, control downloads, hide ads and more …

ベイズ深層学習(4.1)

Sponsored · Your Podcast. Everywhere. Effortlessly. Share. Educate. Inspire. Entertain. You do you. We'll handle the rest.
Avatar for catla catla
February 07, 2020

 ベイズ深層学習(4.1)

Avatar for catla

catla

February 07, 2020
Tweet

More Decks by catla

Other Decks in Science

Transcript

  1. αϯϓϦϯάʹجͮ͘ਪ࿦ख๏ ɹ؍ଌσʔλΛ ɼඇ؍ଌͷม਺ͷू߹ʢFHύϥϝʔλɼજࡏม਺ Λ ͱͨ͠ͱ ͖ɼϕΠζਪ࿦ʹΑΔ౷ܭղੳͰ͸ɼ֬཰Ϟσϧ Λઃܭ͢Δඞཁ͕͋Δɽ ɹ࣮ࡍʹɼ֬཰ϞσϧΛ༻ֶ͍ͯश΍༧ଌ͸ɼࣄޙ෼෍ Λܭࢉͯ͠ߦΘΕΔɽ X

    Z p(X, Z) p(Z|X) ໰୊఺ ղܾࡦ ɹෳࡶͳϞσϧʢFHχϡʔϥϧωοτʣ͸ɼ ͕ղੳతʹٻΊΒΕͳ͍͜ͱ͕ ଟ͍ɽ p(Z|X) ɹ ΛղੳతʹٻΊΔ୅ΘΓʹɼ͜ͷ෼෍͔Βෳ਺ͷαϯϓϧΛಘΔ͜ͱͰɼ෼෍ ͷಛੑΛௐ΂Δɽ ɹͱ͍͏͜ͱ͔ΒɼαϯϓϦϯά͢Δํ๏Λࠓճ͸ษڧ͢ΔΑʂ p(Z|X)
  2. ୯७ϞϯςΧϧϩ๏ ɹ෼෍ ʹର͢Δؔ਺ ͷظ଴஋ɹ ΛٻΊ͍ͨɽɹ p(z) f(z) p(z) [ f(z)]

    = ∫ f(z)p(z)dz ໨త ঢ়گ ɹظ଴஋ ͷղੳతͳੵ෼ܭࢉ͕ࠔ೉ɽ ɹ෼෍ ͔ΒͷαϯϓϦϯά͸༰қɽ ∫ f(z)p(z)dz p(z) ख๏ ɹ Λे෼େ͖ͳ஋ͱͨ͠ͱ͖ɼ     T z(1), z(2), …, z(T) ∼ p(z) ∫ f(z)p(z)dz ≈ 1 T T ∑ t=1 f(z(t))  ͔Β ݸαϯϓϦϯά ⟵ p(z) T
  3. ɹύϥϝʔλ Λ࣋ͭϞσϧ ͷपล໬౓ Λܭࢉ͢Δࡍʹ࢖༻͢ Δ৔߹ɼ  θ p(X, θ) =

    p(X|θ)p(θ) p(X) p(X) = ∫ p(X|θ)p(θ)dθ = ∫ N ∏ n=1 p(xn |θ)p(θ)dθ = p(θ) [p(X|θ)] ≈ 1 T T ∑ t=1 N ∏ n=1 p(xn |θ(t)), (θ(1), …, θ(T) ∼ p(θ)) ɹظ଴஋ ʹ͓͍ͯɼ ͔Βͷαϯϓϧ ͷൣғ͸෯޿͘ͱΔඞཁ͕͋ΓɼҰํ Ͱɼ ͸ڱ͍ ͷൣғͰ͔͠େ͖ͳ஋ΛऔΒͳ͍έʔε͕ଟ͍ɽ ɹ ൚༻త͚ͩͲɼܭࢉޮ཰͕ѱ͍ɽ p(z) [ f(z)] p(z) z f(z) z ⟹ ୯७ϞϯςΧϧϩ๏ ໰୊఺
  4. غ٫αϯϓϦϯά ɹີ౓ܭࢉ͕ࠔ೉ͳ֬཰෼෍ ͔ΒαϯϓϧΛಘΔɽɹ p(z) z(1), z(2), … ∼ p(z) ໨త

    ঢ়گ ɹਖ਼نԽ͞Ε͍ͯͳ͍ؔ਺ ͸ܭࢉՄೳɽͭ·Γɼ ɽ ˜ p(z)( = Zp ⋅ p(z)) ∫ ˜ p(z)dz ≠ 1 ख๏ ɹఏҊ෼෍ Λઃఆ͢Δɽ೚ҙͷ ʹରͯ͠ɼ ɹɹɹɹɹɹɹɹɹɹɹɹɹɹɹɹɹ  ͱͳΔΑ͏ʹɼਖ਼ͷఆ਺ ΛఆΊΔɽ q(z) z kq(z) > ˜ p(z) k ఏҊ෼෍ ɹαϯϓϦϯά͕؆୯ʹߦ͑ΔΑ͏ͳ Ծͷ෼෍ɽ
  5. غ٫αϯϓϦϯά ख๏ ͖ͭͮʣ ɹఏҊ෼෍ ͔ΒαϯϓϧΛಘΔɽ   ɹҰ༷෼෍ ͔ΒͷαϯϓϧΛಘΔɽ 

     ɹαϯϓϧ ͷड༰ʢBDDFQUʣغ٫ʢSFKFDUʣબ୒ɽ ɹɹɹ q(z) z(t) ∼ q(z) Uni(0,kq(z)) ˜ u ∼ Uni (0,kq(z(t))) z(t) if ˜ u > ˜ p(z(t)) then SFKFDU else BDDFQU ड༰཰ ∫ q(z) ˜ p(z) kq(z) dz = 1 k ∫ ˜ p(z)dz ໰୊఺ ߴ࣍ݩͷม਺ͷαϯϓϦϯά͕ඞཁͳ৔߹ɼड༰཰͕ඇৗʹ௿͘ͳΔɽ
  6. غ٫αϯϓϦϯά z ˜ p(z) kq(z) z(t) kq(z(t)) ˜ u Ұ༷෼෍

    ͔ΒͷαϯϓϧΛಘΔ Uni(0,kq(z)) ˜ u ∼ Uni (0,kq(z(t)))
  7. غ٫αϯϓϦϯά z ˜ p(z) kq(z) z(t) kq(z(t)) ड༰ غ٫ ˜

    u αϯϓϧ ͷड༰ʢBDDFQUʣغ٫ʢSFKFDUʣબ୒ɽ z(t) if ˜ u > ˜ p(z(t)) then SFKFDU else BDDFQU ˜ p(z(t))
  8. ࣗݾਖ਼نԽॏ৺αϯϓϦϯά ɹ෼෍ ʹର͢Δؔ਺ ͷظ଴஋ɹ Λ୯७ϞϯςΧϧϩ๏Α Γ΋ޮ཰తʹٻΊ͍ͨɽɹ p(z) f(z) p(z) [

    f(z)] = ∫ f(z)p(z)dz ໨త ঢ়گ ɹظ଴஋ ͷղੳతͳੵ෼ܭࢉ͕ࠔ೉ɽ ɹ෼෍ ͔Β௚઀αϯϓϦϯάΛಘΒΕͳ͍ɽ ɹਖ਼نԽ͞Ε͍ͯͳ͍ؔ਺ ͸ܭࢉՄೳɽ ∫ f(z)p(z)dz p(z) ˜ p(z)( = Zp ⋅ p(z)) എܠ ɹغ٫αϯϓϦϯάΛ༻͍ͯɼ Λ࢖ΘͣʹαϯϓϧΛऔಘ͠ɼظ଴஋ Λٻ ΊΔ͜ͱ΋Ͱ͖Δ͕ɼ ͷ஋͕খ͞ͳྖҬʹαϯϓϧ͕ूத͢ΔՄೳੑ͕͋Δɽ ୯७ϞϯςΧϧϩ๏ͷܭࢉ΁ͷد༩͕গͳ͍ɽ ͷ஋͕େ͖͘ͳΔΑ͏ͳ ྖҬΛॏ఺తʹαϯϓϧͨ͠ํ͕ޮ཰͕͍͍ɽ p(z) p(z) [ f(z)] f(z) ⟹ f(z)p(z)
  9. ࣗݾਖ਼نԽॏ৺αϯϓϦϯά ɹ·ͣɼఏҊ෼෍ Λઃఆ͢Δɽਖ਼نԽ͞Ε͍ͯͳ͍ؔ਺ ͸ɼҎԼͷΑ͏ʹද ͞ΕΔɽ   ɹظ଴஋ͷܭࢉ͸ɼҎԼͷΑ͏ʹมܗͰ͖Δɽ  q(z)

    ˜ p(z), ˜ q(z) p(z) = 1 Zp ˜ p(z), q(z) = 1 Zq ˜ q(z) ∫ f(z)p(z)dz = ∫ f(z) p(z) q(z) q(z)dz = q(z) [ f(z) p(z) q(z) ] = ∫ f(z) 1 Zp ˜ p(z) 1 Zq ˜ q(z) q(z)dz = Zq Zp q(z) [ f(z) ˜ p(z) ˜ q(z) ] ≈ Zq Zp 1 T T ∑ t=1 f(z(t)) ˜ p(z(t)) ˜ q(z(t)) = Zq Zp 1 T T ∑ t=1 f(z(t))w(t), w(t) = ˜ p(z(t)) ˜ q(z(t)) ख๏
  10. ࣗݾਖ਼نԽॏ৺αϯϓϦϯά ɹ ͸ະ஌ͷ஋ͳͷͰɼҎԼͷΑ͏ʹਖ਼نԽ߲ͷൺΛۙࣅ͢Δɽ     ɹΑͬͯɼؔ਺ ͷظ଴஋͕ۙࣅతʹಘΒΕΔɽ Zp

    Zp Zq = ∫ ˜ p(z) Zq dz = ∫ ˜ p(z) ˜ q(z) q(z)dz = q(z) [ ˜ p(z) ˜ q(z) ] ≈ 1 T T ∑ t=1 w(t), z(1), …, z(T) ∼ q(z) f(z) ख๏ ͖ͭͮʣ ( ∵ p(z) = 1 Zp ˜ p(z) ) ( ∵ ∫ p(z)dz = 1 Zp ∫ ˜ p(z)dz = 1 )
  11. ࣗݾਖ਼نԽॏ৺αϯϓϦϯά ɹ ͸ະ஌ͷ஋ͳͷͰɼҎԼͷΑ͏ʹਖ਼نԽ߲ͷൺΛۙࣅ͢Δɽ     ɹΑͬͯɼؔ਺ ͷظ଴஋͕ۙࣅతʹಘΒΕΔɽ Zp

    Zp Zq = ∫ ˜ p(z) Zq dz = ∫ ˜ p(z) ˜ q(z) q(z)dz = q(z) [ ˜ p(z) ˜ q(z) ] ≈ 1 T T ∑ t=1 w(t), z(1), …, z(T) ∼ q(z) f(z) ख๏ ͖ͭͮʣ ( ∵ p(z) = 1 Zp ˜ p(z) ) ( ∵ ∫ p(z)dz = 1 Zp ∫ ˜ p(z)dz = 1 ) ͳΜͷͨΊʹ Λ ͖࣋ͬͯͨΜͩΖ͏ʜ ˜ q(z)
  12. Ϛϧίϑ࿈࠯ϞϯςΧϧϩ๏ʢ.$.$ʣ ɹغ٫αϯϓϦϯάͷ໰୊఺͸ɼߴ࣍ݩʹͳΔͱड༰཰͕ඇৗʹখ͘͞ͳΔ͜ͱɽ࣮ࡍ ʹ͸ɼ࣍ݩఔ౓ͷ؆୯ͳੵ෼ۙࣅʹ͔͠ద༻Ͱ͖ͳ͍ɽ ɹͰ͸ɼߴ࣍ݩۭؒͰޮ཰తʹαϯϓϦϯά͢Δʹ͸ʜʜ  ɹɹɹ Ϛϧίϑ࿈࠯ϞϯςΧϧϩ๏ʢ.$.$ʣ͕ఏҊ͞Ε͍ͯΔɽ ⟹ ࣍Ϛϧίϑ࿈࠯ ɹ֬཰ม਺ͷܥྻ

    ʹରͯ͠  ͕੒Γཱͭͱ͖ͷܥྻ ͷ͜ͱɽ z(1), z(2), … p(z(t) |z(1), z(2), …, z(t−1)) = p(z(t) |z(t−1)) z(1), z(2), … άϥϑΟΧϧϞσϧ z(1) z(2) z(t−1) z(t) ⋯ ɹભҠ֬཰ɹΛ ͱ͓͍ͨͱ͖ɼ  ͕੒Γཱͭͱ͖ɼ Λɹఆৗ෼෍ɹͱ͍͏ɽ (z(t−1), z(t)) = p(z(t) |z(t−1)) p* (z) = ∫ (z′ , z)p* (z′ )dz′ p* (z)
  13. Ϛϧίϑ࿈࠯ϞϯςΧϧϩ๏ʢ.$.$ʣ ɹఆৗ෼෍ ʹऩଋ͢ΔΑ͏ͳભҠ֬཰ Λઃܭ͢Δͱɼ ͔Βαϯϓϧ ΛಘΔ͜ͱ͕Ͱ͖Δɽ ఆৗ෼෍ʹີ౓ܭࢉ͕ࠔ೉ͳ֬཰෼෍Λ͓͘ɽ p* (z) (z(t−1),

    z(t)) p* (z) ⟹ ख๏ͷΩϞ ৄࡉ௼Γ߹͍৚݅ p* (z)(z, z′ ) = p* (z′ )(z′ , z) ʲे෼৚݅ʳৄࡉ௼Γ߹͍৚͕݅੒Γཱͭ  ͸ఆৗ෼෍ͱͳΔɽ ⟹ p* (z) p* (z)(z, z′ ) = p* (z′ )(z′ , z) ⇒ ∫ p* (z)(z, z′ )dz′ = ∫ p* (z′ )(z′ , z)dz′ ⇔ p* (z) ∫ p(z′ |z)dz′ = ∫ p* (z′ )(z′ , z)dz′ ⇔ p* (z) = ∫ p* (z′ )(z′ , z)dz′
  14. Ϛϧίϑ࿈࠯ϞϯςΧϧϩ๏ʢ.$.$ʣ ɹ௼Γ߹͍৚݅ʹՃ͑ͯɼαϯϓϧ਺͕ ͱͨ͠ͱ͖ɼॳظঢ়ଶ ʹ͔͔ΘΒ ͣɼ ͕ఆৗ෼෍ ʹऩଋ͢Δඞཁ͕͋Δɽ Τϧΰʔυੑ t →

    ∞ p(z(1)) p(z(t)) p* (z) ⟹ Τϧΰʔυੑ w ط໿ੑɹɿ೚ҙͷঢ়ଶ͔Β೚ҙͷঢ়ଶ΁༗ݶճ਺ͰભҠՄೳɽ w ඇपظੑɿ͢΂ͯͷঢ়ଶ͕ݻఆͷपظੑΛ΋ͨͳ͍ɽ w ਖ਼࠶ؼੑɿಉ͡ঢ়ଶ͕༗ݶճͰ໭Δ͜ͱ͕Մೳɽ
  15. ϝτϩϙϦεɾϔΠεςΟϯάε๏ʢ.)๏ʣ ໨త ɹະ஌ͷ֬཰෼෍ ͔ΒαϯϓϦϯάΛಘΔɽ p(z) લఏ ɹ ͱͳΔਖ਼نԽ͞Ε͍ͯͳ͍ؔ਺ ͸ط஌Ͱ͋Δɽ p(z)

    ∝ ˜ p(z) ˜ p(z) ख๏ ɹભҠ֬཰ ͕௚઀ઃܭ͕೉͍͠৔߹͸ɼભҠͷఏҊ෼෍ Λ࢖͑Δɽ (z′ , z) q(z|z′ ) ɽఏҊ෼෍ ͔Β࣍ͷαϯϓϧ఺ͷީิ ΛαϯϓϦϯά͢Δɽ ɽ࣍ͷൺ཰ Λܭࢉ͢Δɽ   ɽ Λ֬཰ ʹΑͬͯ ͱͯ͠ड༰͠ɼͦ͏Ͱͳ͍৔߹ ͸ɼ ͱ͢Δɽ q( ⋅ |z(t)) z* r r = ˜ p(z* )q(z(t) |z* ) ˜ p(z(t))q(z* |z(t)) z* min(1,r) z(t+1) ⟵ z* z(t+1) ⟵ z(t) ΞϧΰϦζϜͷྲྀΕ
  16. ϝτϩϙϦεɾϔΠεςΟϯάε๏ʢ.)๏ʣ ৄࡉ௼Γ߹͍৚݅ͷূ໌ ɹભҠ֬཰͸ɼҎԼͷΑ͏ʹͳΔɽ (z, z′ ) = q(z′ |z) min

    (1, ˜ p(z′ )q(z|z′ ) ˜ p(z)q(z′ |z) ) p(z)(z, z′ ) = p(z)q(z′ |z) min (1, ˜ p(z′ )q(z|z′ ) ˜ p(z)q(z′ |z) ) = p(z)q(z′ |z) min (1, p(z′ )q(z|z′ ) p(z)q(z′ |z) ) = min (p(z)q(z′ |z), p(z′ )q(z|z′ )) = min (p(z′ )q(z|z′ ), p(z)q(z′ |z)) = p(z′ )q(z|z′ ) min (1, p(z)q(z′ |z) p(z′ )q(z|z′ )) = p(z′ )q(z|z′ ) min (1, ˜ p(z)q(z′ |z) ˜ p(z′ )q(z|z′ )) = p(z′ )(z′ , z) ɹ ͷ৔߹͸ɼϝτϩϙϦε๏ͱݺ͹ΕΔɽ q(z′ |z) = q(z|z′ )
  17. ϝτϩϙϦεɾϔΠεςΟϯάε๏ʢ.)๏ʣ ʮϕΠζਂ૚ֶशʯQࣜʢʣ ޡΓ (z, z′ ) = q(z′ |z) min

    (1, ˜ p(z′ )q(z|z′ ) ˜ p(z)q(z′ |z) ) (z, z′ ) = q(z|z′ ) min (1, ˜ p(z′ )q(z|z′ ) ˜ p(z)q(z′ |z) )
  18. ϝτϩϙϦεɾϔΠεςΟϯάε๏ʢ.)๏ʣ ۩ମྫͰֶͿ ໨ඪ෼෍ʢະ஌ʣ ɹɹɹɹɹɹɹ  ਖ਼نԽ͞Ε͍ͯͳ͍ؔ਺ʢط஌ʣ   ఏҊ෼෍ 

    ͭ·Γ   p(z) = (z|μ, Σ) = 1 (2π)D |Σ| exp {− 1 2 (z − μ)TΣ−1(z − μ)} ˜ p(z) = exp {− 1 2 (z − μ)TΣ−1(z − μ)} q(z* |z) = (z′ |z, I) z* ∼ (z, I) https://drive.google.com/open?id=1vcBZWp9HPzfCzBjj2INdkH_CJUDL-JA3
  19. ɹαϯϓϦϯάͷલʹϋϛϧτχΞϯΛར༻ͨ͠ղੳֶతͳ਺஋γϛϡϨʔγϣϯΛղ આɽຎࡲʹΑΔΤωϧΪʔͷݮগ͕ͳ͍ͱԾఆ͢ΔͱɼϋϛϧτχΞϯ͸ҎԼͷΑ͏ʹ ද͞ΕΔɽ ℋ(z, p) = (z) + (p), (p)

    = 1 2m pTp, z ∈ ℝD: ෺ମͷҐஔϕΫτϧ, p ∈ ℝD: ෺ମͷӡಈྔϕΫτϧ, m ∈ ℝ: ෺ମͷ࣭ྔ, ℋ(z, p): ϋϛϧτχΞϯ, (z): ϙςϯγϟϧΤωϧΪʔ, (p): ӡಈΤωϧΪʔ . ϋϛϧτχΞϯϞϯςΧϧϩ๏ʢ).$๏ʣ ).$๏ʢϋΠϒϦοτϞϯςΧϧϩ๏ʣʹ෺ମͷيಓͷझຯϨʔγϣϯ .)๏ × ɹ).$๏͸ɼϥϯμϜ΢ΥʔΫతͳ.)ͱൺ΂ͯɼޮ཰తʹۭؒΛ୳ࡧՄೳɽ ϋϛϧτχΞϯͷγϛϡϨʔγϣϯ
  20. ϋϛϧτχΞϯϞϯςΧϧϩ๏ʢ).$๏ʣ ɹ࣭ྔΛͱ͠ɼ ͱ ͷ࣌ؒ ʹؔ͢Δڍಈ͸ɼϋϛϧτχΞϯͷภඍ෼ʹΑܾͬͯఆɽ   ͜ͷඍ෼ํఔ͕ࣜղੳతʹղ͚ͳ͍΋ͷͱ͠ɼ਺஋γϛϡϨʔγϣϯʹΑͬͯيಓΛܭ ࢉ͢Δɽ z

    p τ dpi dτ = − dℋ dzi = − d dzi , dzi dτ = dℋ dpi = d dpi . ΦΠϥʔ๏ ࣌ࠁ ઌͷڍಈΛۙࣅతʹ༧ଌɽ ϵ > 0 pi (τ + ϵ) = pi (τ) + ϵ dpi dτ τ = pi (τ) − ϵ d dzi zi (τ) , zi (τ + ϵ) = zi (τ) + ϵ dzi dτ τ = zi (τ) + ϵpi (τ) ໰୊఺ ཭ࢄԽʹΑΔ਺஋ޡ͕ࠩେ͖͍ɽ Ϧʔϓϑϩοά๏ ⟹
  21. ϋϛϧτχΞϯϞϯςΧϧϩ๏ʢ).$๏ʣ Ϧʔϓϑϩοά๏ pi (τ + ϵ 2 ) = pi

    (τ) − ϵ 2 d dzi zi (τ) , zi (τ + ϵ) = zi (τ) + ϵpi (τ + ϵ 2 ), pi (τ + ϵ) = pi (τ + ϵ 2 ) − ϵ 2 d dzi zi (τ + ϵ) . ͜ΕΛ ճ܁Γฦ͢͜ͱͰ࣌ࠁ ઌͷ෺ମͷҐஔ ͱӡಈྔ ΛۙࣅతʹܭࢉͰ͖Δɽ L ϵL z* p* ϋϛϧτχΞϯͷੑ࣭ ɽ ͸࣌ؒ ʹΑͬͯෆมɽ ɽՄٯੑɿ ͔Β ͷભҠ͸ҰରҰɽ ɽମੵอଘ ℋ τ (z, p) (z* , p* )
  22. ϋϛϧτχΞϯϞϯςΧϧϩ๏ʢ).$๏ʣ αϯϓϦϯάΞϧΰϦζϜ΁ͷద༻ ໨త ɹະ஌ͷ֬཰෼෍ ͔ΒαϯϓϦϯάΛಘΔɽ p(z) લఏ ɹ ͱͳΔਖ਼نԽ͞Ε͍ͯͳ͍ؔ਺ ͸ط஌Ͱ͋Δɽ

    ɹ ͱ֦ு͢Δͱɼ ͸पล෼෍ ͔Βαϯϓϧ͕ಘΒΕΔɽ ɹ   p(z) ∝ ˜ p(z) ˜ p(z) p(z, p) = p(z)p(p) z p(z) p(p) = (p|0, I) (z) = − log (˜ p(z)) (p) = 1 2 pTp
  23. ϋϛϧτχΞϯϞϯςΧϧϩ๏ʢ).$๏ʣ ɹಉ࣌෼෍Λܭࢉ͢ΔͱɼҎԼͷΑ͏ʹͳΔɽ  ϝτϩϙϦε๏Ͱ࢖ΘΕΔൺ཰ ͸ɼҎԼͷΑ͏ʹͳΔɽ p(z, p) = p(z)p(p) =

    exp (log p(z) + log p(p)) ∝ exp (log ˜ p(z) − 1 2 pTIp ) = exp (−(z) − (p)) = exp (−ℋ(z, p)) r r = p(z* , p* ) p(z, p) = exp (−ℋ(z* , p* ) + ℋ(z, p))
  24. ϋϛϧτχΞϯϞϯςΧϧϩ๏ʢ).$๏ʣ ख๏ ɽӡಈྔΛαϯϓϦϯά  ɽϦʔϓϑϩοά๏Ͱݱࡏͷ఺ ͔Βީิ఺ ΛಘΔɽ ɽ࣍ͷൺ཰ Λܭࢉ͢Δɽ 

     ɽ Λ֬཰ ʹΑͬͯ ͱͯ͠ड༰͠ɼͦ͏Ͱͳ͍৔߹ ͸ɼ ͱ͢Δɽ p ∼ (0, I) (z(t), p) (z* , p* ) r r = p(z* , p* ) p(z, p) z* min(1,r) z(t+1) ⟵ z* z(t+1) ⟵ z(t) ΞϧΰϦζϜͷྲྀΕ
  25. ໨ඪ෼෍ʢະ஌ʣ ɹɹɹɹɹɹɹ  ਖ਼نԽ͞Ε͍ͯͳ͍ؔ਺ʢط஌ʣ   ӡಈྔͷαϯϓϦϯάɿ  ӡಈΤωϧΪʔɿ 

    ҐஔΤωϧΪʔɿ  ҐஔΤωϧΪʔͷภඍ෼ɿ  p(z) = (z|μ, Σ) = 1 (2π)D |Σ| exp {− 1 2 (z − μ)TΣ−1(z − μ)} ˜ p(z) = exp {− 1 2 (z − μ)TΣ−1(z − μ)} p ∼ (0, I) (p) = 1 2 pTp (z) = − log (˜ p(z)) = − 1 2 (z − μ)TΣ−1(z − μ) ∂ ∂z = − (z − μ)TΣ−1 ϋϛϧτχΞϯϞϯςΧϧϩ๏ʢ).$๏ʣ ۩ମྫͰֶͿ https://drive.google.com/open?id=11zWctTbECXEhlHm7AqPiXC_MErAYl7hJ
  26. ΪϒεαϯϓϦϯά ໨త ɹ֬཰෼෍ ͔Β௚઀ શମΛαϯϓϦϯά͢Δ͜ͱ͕೉͍͠ͱ͖ͷ୳ࡧɽ p(Z) Z લఏ ɹ֬཰෼෍ ͸ط஌ɽ

    p(Z) ख๏ ɹɽม਺ Λ ݸͷ෦෼ू߹ʹ෼͚Δɽ  ɹɽ෦෼ू߹Λஞ࣍తʹ୳ࡧ͢Δɽ ɹ Z M Z = {Z1 , Z2 , …, ZM } Z1 ∼ p(Z1 |Z2 , Z3 , …, ZM−1 , ZM ) Z2 ∼ p(Z2 |Z1 , Z3 , …, ZM−1 , ZM ) ⋮ ZM ∼ p(ZM |Z1 , Z2 , …, ZM−2 , ZM−1 )
  27. ΪϒεαϯϓϦϯά ɹΪϒεαϯϓϦϯάͷଥ౰ੑ͸ɼαϯϓϦϯάͷखଓ͖͕.)๏ͷҰछͱͯ͠ղऍͰ ͖Δ͜ͱ͕อূ͞Ε͍ͯΔɽ ͷΑ͏ʹ෼͚ɼ Λ৚݅෇͚ͨ͠΋ͱͰ ͷα ϯϓϦϯάΛ͢Δ͜ͱΛߟ͑ͨ৔߹ɼ ͔ͭ  ɹൺ཰

    Λܭࢉ͢ΔͱҎԼͷΑ͏ʹͳΔɽ  Αͬͯɼશͯड༰͞ΕΔɽ ΋ಉ༷ɽ Z = {Z1 , Z2 } Z2 Z1 q(Z* |Z) = p(Z1* |Z2* ) Z2 = Z2* r r = p(Z* )q(Z|Z* ) p(Z)q(Z* |Z) = p(Z1* , Z2* )p(Z1 |Z2* ) p(Z1 , Z2 )p(Z1* |Z2 ) = p(Z1* |Z2* )p(Z2* )p(Z1 |Z2* ) p(Z1 |Z2 )p(Z2 )p(Z1* |Z2 ) = 1 Z2
  28. ΪϒεαϯϓϦϯά ۩ମྫͰֶͿ ໨ඪ෼෍ʢط஌ʣ ɹɹɹɹ  ͱ͢Δɽ  p(z) = (z|μ,

    Σ) = 1 (2π)D |Σ| exp {− 1 2 (z − μ)TΣ−1(z − μ)} z = ( z1 z2 ), μ = ( μ1 μ2 ), Σ = ( Σ11 Σ12 Σ21 Σ22 ), Λ = Σ−1 = ( Λ11 Λ12 Λ21 Λ22 ) log p(z) = log p(z1 , z2 ) = − 1 2 (z1 − μ1 )TΛ11 (z1 − μ1 ) + (z1 − μ1 )TΛ12 (z2 − μ2 )) − 1 2 (z2 − μ2 )TΛ22 (z2 − μ2 ) + (z2 − μ2 )TΛ21 (z1 − μ1 )) = − 1 2 ( zT 1 Λ11 z1 − 2z1 {Λ11 μ1 − 1 2 Λ12 (z2 − μ2 )}) + C1 − 1 2 ( zT 2 Λ22 z2 − 2z2 {Λ22 μ2 − 1 2 Λ21 (z1 − μ1 )}) + C2
  29. ΪϒεαϯϓϦϯά ۩ମྫͰֶͿ Αͬͯɼ৚݅෇͖֬཰ͷର਺͸ɼ  ͱͳΔͷͰɼ৚݅෇͖֬཰͸Ψ΢ε෼෍Ͱ͋Δɼ   log p(zi |zj

    ) = − 1 2 ( zT i Λii zi − 2zi { Λii μi − 1 2 Λij (zj − μj )}) + C p(zi |zj ) = (zi |μi , Σi ), Σ−1 i = Λii , Σ−1 i μi = Λii μi − 1 2 Λij (zj − μj ), ⇔ μi = Σi ( Λii μi − 1 2 Λij (zj − μj )) . https://drive.google.com/open?id=1ReYNvvH-NgtsuRiDDV-lz1779sps2pT0