Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
TGS Salt Identification Challenge 12th place so...
Search
catla
November 30, 2018
Research
3
11k
TGS Salt Identification Challenge 12th place solution
catla
November 30, 2018
Tweet
Share
More Decks by catla
See All by catla
ベイズ深層学習(6.3)
catla
2
220
ベイズ深層学習(6.2)
catla
3
230
[読み会資料] Federated Learning for Vision-and-Language Grounding Problems
catla
0
290
ベイズ深層学習(5.1~5.2)
catla
0
230
ベイズ深層学習(4.1)
catla
0
450
ベイズ深層学習(3.3~3.4)
catla
18
11k
ベイズ深層学習(2.2~2.4)
catla
6
1.3k
23回アルゴリズムコンテスト 1位解法
catla
6
670
Learning Lightweight Lane Detection CNNs by Self Attention Distillation(ICCV2019)の紹介
catla
0
570
Other Decks in Research
See All in Research
生成的推薦の人気バイアスの分析:暗記の観点から / JSAI2025
upura
0
260
能動適応的実験計画
masakat0
2
810
2025年度人工知能学会全国大会チュートリアル講演「深層基盤モデルの数理」
taiji_suzuki
25
18k
診断前の病歴テキストを対象としたLLMによるエンティティリンキング精度検証
hagino3000
1
130
Mechanistic Interpretability:解釈可能性研究の新たな潮流
koshiro_aoki
1
410
SSII2025 [TS2] リモートセンシング画像処理の最前線
ssii
PRO
7
3.1k
数理最適化と機械学習の融合
mickey_kubo
16
9.3k
[CV勉強会@関東 CVPR2025] VLM自動運転model S4-Driver
shinkyoto
2
480
2021年度-基盤研究B-研究計画調書
trycycle
PRO
0
300
利用シーンを意識した推薦システム〜SpotifyとAmazonの事例から〜
kuri8ive
1
250
問いを起点に、社会と共鳴する知を育む場へ
matsumoto_r
PRO
0
610
SNLP2025:Can Language Models Reason about Individualistic Human Values and Preferences?
yukizenimoto
0
130
Featured
See All Featured
Designing for Performance
lara
610
69k
Music & Morning Musume
bryan
46
6.8k
We Have a Design System, Now What?
morganepeng
53
7.8k
Writing Fast Ruby
sferik
628
62k
Templates, Plugins, & Blocks: Oh My! Creating the theme that thinks of everything
marktimemedia
31
2.5k
Raft: Consensus for Rubyists
vanstee
140
7.1k
The Illustrated Children's Guide to Kubernetes
chrisshort
48
50k
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
46
7.6k
Understanding Cognitive Biases in Performance Measurement
bluesmoon
29
1.9k
Scaling GitHub
holman
463
140k
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
PRO
23
1.4k
Building a Scalable Design System with Sketch
lauravandoore
462
33k
Transcript
5(44BMU*EFOUJpDBUJPO$IBMMFOHF 5FBN-FBSOJOHUIF'VUVSF UIQMBDFTPMVUJPO DBUMB ,BHHMFNFFUVQ LBHHMF@UPLZP
ࣗݾհ ໊લܡɹঘً 5XJUUFS!LBUTVSB@KQ ॴଐஜେֶɹใֶ܈ɹใՊֶྨɹ ϓϩάϥϛϯάྺ ઐ߈ແ͠ ͦͷଞ
ࠓճ͕,BHHMFॳઓ
νʔϜհ
ίϯϖͷ֓ཁ ը૾͔ΒԘؚ͕·Ε͍ͯΔ෦ΛృΓֆ͢Δίϯϖ ηϚϯςΟοΫηάϝϯςʔγϣϯ *OQVUσʔλάϨʔεέʔϧը૾ Y σʔλ EFQUIσʔλը૾ͷਂ͞ใ 5SBJOJOHEBUBTFUຕ 5FTUEBUBTFUຕ ࢀՃνʔϜ
UFBNT σʔλαΠζ͕খ͍͞ ظؒɿd
wධՁࢦඪ w *P6 JOUFSTFDUJPOPWFSVOJPO ίϯϖͷ֓ཁ w͔ͬͨ͠ wॎʹਨͳϚεΫͷ༧ଌਫ਼
1VCMJD-#UI
1SJWBUF-#UI
4PMVUJPO 6/FUϕʔε
4PMVUJPO
4PMVUJPO 6/FU
4PMVUJPO d#BTF&ODPEFSd DBUMB 3FT/F9U MZBLB 3FT/FU BMVQ
3FT/FU 3FT/F9U DPTUBT 3FT/FU PVSBOPT %FOTF/FU USJBO 3FT/FU
4PMVUJPO .BY1PPMJOH $POWE TUSJEFT *OQVUTJ[F Y Y
4PMVUJPOd&ODPEFSd #BDLCPOF#MPDL #BDLCPOF#MPDL Y D D
I X D (MPCBMQPPMJOH %FOTF 3FMV %FOTF 4JHNPJE
4PMVUJPOd&ODPEFSd #BDLCPOF#MPDL #BDLCPOF#MPDL Y Y I X D (MPCBMQPPMJOH %FOTF
D D 3FMV %FOTF 4JHNPJE $POWE LFSOFMTJ[F PVUDIBOOFM 4JHNPJE I X I X D
4PMVUJPOdDFOUFSd $POWE #/ 3FMV $POW % $POWE #/ 3FMV $POWE
#/ 3FMV $POW % $POW % $POW % %%FMBUJPO
4PMVUJPOd%FDPSEFSd $POWE #/ 3FMV $POWE #/ 3FMV Y Y
D D $POWE LFSOFMTJ[F PVUDIBOOFM 4JHNPJE I X I X D $POWE #/ 3FMV $POWE #/ 3FMV I X D (MPCBMQPPMJOH %FOTF 3FMV %FOTF 4JHNPJE
4PMVUJPO -PTT 'PDBM-PTT -PWBT[MPTT BDUJWBUJPO3FMVPSFMV 0QUJNJ[FS "EBN NPNFOUVN4(%
4PMVUJPO )ZQFSDPMNO
4PMVUJPO ɾQTFVEPMBCFMJOH ɾ4OBQ4IPU&OTFNCMJOH ɾ'BTU(FPNFUSJD&OTFNCMJOH
4PMVUJPO
4PMVUJPO -PTT
4PMVUJPOd1PTU1SPDFTTJOHd
4PMVUJPOd1PTU1SPDFTTJOHd
4PMVUJPOd1PTU1SPDFTTJOHd 1VCMJD-# 1SJWBUF-#ʹɺ ӨڹΛ༩͑ͳ͔ͬͨ
͓ΘΓʹ 5XJUUFS աڈͷίϯϖ 2JJUB (JU)VC .FEJVN 4MJEFTIBSF BS9JW ຊ FUDʜ
ͲΜͲΜ׆༻͠Α͏ʂ ᩦཉʹ୳ͤ༗༻ͳใ͕͝Ζ͝Ζམͪͯ ·͢ɻࠓճͷίϯϖͰɺ͜ΕΒΛಛʹ׆ ༻͍ͯ͠·ͨ͠ɻͥͻࢀߟʹ