Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
23回アルゴリズムコンテスト 1位解法
Search
catla
December 19, 2019
Research
6
660
23回アルゴリズムコンテスト 1位解法
2019年12月19日に大分大学で開かれたPRMU研究会における発表資料になります。
catla
December 19, 2019
Tweet
Share
More Decks by catla
See All by catla
ベイズ深層学習(6.3)
catla
2
210
ベイズ深層学習(6.2)
catla
3
210
[読み会資料] Federated Learning for Vision-and-Language Grounding Problems
catla
0
260
ベイズ深層学習(5.1~5.2)
catla
0
220
ベイズ深層学習(4.1)
catla
0
430
ベイズ深層学習(3.3~3.4)
catla
18
11k
ベイズ深層学習(2.2~2.4)
catla
6
1.3k
Learning Lightweight Lane Detection CNNs by Self Attention Distillation(ICCV2019)の紹介
catla
0
550
TGS Salt Identification Challenge 12th place solution
catla
3
11k
Other Decks in Research
See All in Research
Leveraging LLMs for Unsupervised Dense Retriever Ranking (SIGIR 2024)
kampersanda
2
310
The Economics of Platforms 輪読会 第1章
tomonatu8
0
140
[輪講] Transformer Layers as Painters
nk35jk
4
680
20241226_くまもと公共交通新時代シンポジウム
trafficbrain
0
410
Gemini と Looker で営業DX をドライブする / Driving Sales DX with Gemini and Looker
sansan_randd
0
120
Weekly AI Agents News! 11月号 プロダクト/ニュースのアーカイブ
masatoto
0
300
大規模言語モデルを用いたニュースデータのセンチメント判定モデルの開発および実体経済センチメントインデックスの構成
nomamist
0
110
新規のC言語処理系を実装することによる 組込みシステム研究にもたらす価値 についての考察
zacky1972
1
320
Weekly AI Agents News! 10月号 論文のアーカイブ
masatoto
1
510
JSAI NeurIPS 2024 参加報告会(AI アライメント)
akifumi_wachi
5
840
SpectralMamba: Efficient Mamba for Hyperspectral Image Classification
satai
3
150
AWS 音声基盤モデル トーク解析AI MiiTelの音声処理について
ken57
0
140
Featured
See All Featured
Mobile First: as difficult as doing things right
swwweet
223
9.4k
Raft: Consensus for Rubyists
vanstee
137
6.8k
Documentation Writing (for coders)
carmenintech
67
4.6k
10 Git Anti Patterns You Should be Aware of
lemiorhan
PRO
656
59k
Fashionably flexible responsive web design (full day workshop)
malarkey
406
66k
No one is an island. Learnings from fostering a developers community.
thoeni
21
3.1k
Music & Morning Musume
bryan
46
6.4k
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
45
9.4k
For a Future-Friendly Web
brad_frost
176
9.6k
Code Reviewing Like a Champion
maltzj
521
39k
Designing Dashboards & Data Visualisations in Web Apps
destraynor
231
53k
How to Create Impact in a Changing Tech Landscape [PerfNow 2023]
tammyeverts
49
2.3k
Transcript
ճΞϧΰϦζϜίϯςετ Ґ ղ๏ ஜେֶ ใֶ܈ ใՊֶྨ ஜେֶώϡʔϚϯίϯϐϡςʔγϣϯݚڀࣨ ॴଐ OBPLJLBUTVSB!IDPNQDTUTVLVCBBDKQ
ܡ ঘً 13.6ݚڀձ!େେֶ
ίϯςετ֓ཁ ίϯςετͷظؒɿ d ʢϲ݄ʣ ՝༰ɿ ( + 48 &
+ 3!%!% '(")accuracy* + $#+ 119,997 &#+ 16,387 1+ 388,146
લॲཧ
લॲཧ 標準正規分布の確率密度関数 を[-1, 1]の区間で等間隔で サンプリングしたベクトル。 二値化画像を横に合計を取っ たベクトルを見ると、文字部 分は山状になっている。
Ϟσϧͷશମ૾
݁Ռ 手元で評価( Cross validation )した時の認識率は、 ResNet < OctConv ResNet <
DenseNet < Inception-v4 < SE-ResNeXt となった。 モデル 認識率 OctConv ResNet50( 事前学習無し ) 89.59% SE-ResNeXt101( 事前学習有り ) 90.23% アンサンブル (SE-ResNeXt, DenseNet, Inception-v4) 90.63% 順位 最終結果のスコア 1 位 90.63% 2 位 89.35% 3 位 88.95%
Random CropやRandom Shiftといった基本的な Augmentationに加え、分割位置に対してロバストにな るように前処理によって得られた分割位置を学習時にラ ンダムで上下に少しずれるような処理を行なった。 また、学習率のスケジューリングをWarmupとRestart有 りCosine Annealingにすることで収束速度と精度が共に
向上した。
࣮ݧઃఆ ࠷ऴతʹɺϞσϧͷΞϯαϯϒϧʢՃॏฏۉʣͨ͠ͷ͕࠷ߴਫ਼ͱͳͬͨɻϞσϧɺಛྔந ग़Λߦ͏CBDLCPOF͕ҟͳΔ͚ͩͰ͋Γɺ͜ΕΒશͯ*NBHF/FUͰࣄલֶश͞Ε͍ͯΔɻ ˔ CBDLCPOFɿ 4&3FT/F9U %FOTF/FU *ODFQUJPOW ˔ ଛࣦؔɿ
$SPTT&OUSPQZ-PTT ˔ όοναΠζɿ ˔ ࠷దԽؔɿ NPNFOUVN4(%ʢNPNFOUVN XFJHIUEFDBZʣ ˔ εέδϡʔϥɿ 4(%3ʢMSɿd FQPDIDZDMFʣ ˔ ೖྗղ૾ɿY ˔ FQPDIɿ ˔ (16ɿ 5FTMBW (# (59 (# ˔ ͦͷଞɿ.JYFE1SFDJTJPOͰֶश
·ͱΊ • モデルは、特徴量抽出器としてImageNet等で成果を出しているCNNアーキテクチャ、クラス分類 器としては、隣接した画像の特徴を考慮するためにGRUを使用したネットワークを結合した構成。 • 前処理では、大津の二値化をしようして、良さそうな分割位置を推定。 • 分割位置に対してモデルがロバストに学習できるように学習時にランダムで位置を変化させる。 • 学習率をSGDRで変化させると大幅に精度と収束速度が上昇。
• 最も精度が高くなったモデルは、SE-ResNeXt, DenseNet, Inception-v4をアンサンブルさせたモ デル。 コードは公開しております。 https://github.com/katsura-jp/alcon23