Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
23回アルゴリズムコンテスト 1位解法
Search
catla
December 19, 2019
Research
6
650
23回アルゴリズムコンテスト 1位解法
2019年12月19日に大分大学で開かれたPRMU研究会における発表資料になります。
catla
December 19, 2019
Tweet
Share
More Decks by catla
See All by catla
ベイズ深層学習(6.3)
catla
2
200
ベイズ深層学習(6.2)
catla
3
210
[読み会資料] Federated Learning for Vision-and-Language Grounding Problems
catla
0
230
ベイズ深層学習(5.1~5.2)
catla
0
210
ベイズ深層学習(4.1)
catla
0
410
ベイズ深層学習(3.3~3.4)
catla
18
11k
ベイズ深層学習(2.2~2.4)
catla
6
1.2k
Learning Lightweight Lane Detection CNNs by Self Attention Distillation(ICCV2019)の紹介
catla
0
520
TGS Salt Identification Challenge 12th place solution
catla
3
11k
Other Decks in Research
See All in Research
授業評価アンケートのテキストマイニング
langstat
1
310
クラウドソーシングによる学習データ作成と品質管理(セキュリティキャンプ2024全国大会D2講義資料)
takumi1001
0
160
SSII2024 [OS3] 基盤モデル(オープニング)
ssii
PRO
0
310
Weekly AI Agents News!
masatoto
22
17k
Online Nonstationary and Nonlinear Bandits with Recursive Weighted Gaussian Process
monochromegane
0
180
Weekly AI Agents News! 6月号 プロダクト/ニュースのアーカイブ
masatoto
0
110
【ICASSP2024】音声変換に関する全論文まとめ【Parakeet株式会社】
supikiti
0
700
CSER 2024 Keynote
tsantalis
0
120
「人間にAIはどのように辿り着けばよいのか?ー 系統的汎化からの第一歩 ー」@第22回 Language and Robotics研究会
maguro27
0
500
Weekly AI Agents News! 5月号 プロダクト/ニュースのアーカイブ
masatoto
0
110
Embers of Autoregression: Understanding Large Language Models Through the Problem They are Trained to Solve
eumesy
PRO
6
970
SSII2024 [OS2] 大規模言語モデルとVision & Languageのこれから
ssii
PRO
5
1.4k
Featured
See All Featured
KATA
mclloyd
27
13k
CoffeeScript is Beautiful & I Never Want to Write Plain JavaScript Again
sstephenson
157
15k
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
278
13k
Docker and Python
trallard
39
3k
The World Runs on Bad Software
bkeepers
PRO
64
11k
Designing Experiences People Love
moore
138
23k
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
23
580
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
165
48k
Teambox: Starting and Learning
jrom
131
8.7k
GraphQLとの向き合い方2022年版
quramy
43
13k
Documentation Writing (for coders)
carmenintech
65
4.3k
4 Signs Your Business is Dying
shpigford
179
21k
Transcript
ճΞϧΰϦζϜίϯςετ Ґ ղ๏ ஜେֶ ใֶ܈ ใՊֶྨ ஜେֶώϡʔϚϯίϯϐϡςʔγϣϯݚڀࣨ ॴଐ OBPLJLBUTVSB!IDPNQDTUTVLVCBBDKQ
ܡ ঘً 13.6ݚڀձ!େେֶ
ίϯςετ֓ཁ ίϯςετͷظؒɿ d ʢϲ݄ʣ ՝༰ɿ ( + 48 &
+ 3!%!% '(")accuracy* + $#+ 119,997 &#+ 16,387 1+ 388,146
લॲཧ
લॲཧ 標準正規分布の確率密度関数 を[-1, 1]の区間で等間隔で サンプリングしたベクトル。 二値化画像を横に合計を取っ たベクトルを見ると、文字部 分は山状になっている。
Ϟσϧͷશମ૾
݁Ռ 手元で評価( Cross validation )した時の認識率は、 ResNet < OctConv ResNet <
DenseNet < Inception-v4 < SE-ResNeXt となった。 モデル 認識率 OctConv ResNet50( 事前学習無し ) 89.59% SE-ResNeXt101( 事前学習有り ) 90.23% アンサンブル (SE-ResNeXt, DenseNet, Inception-v4) 90.63% 順位 最終結果のスコア 1 位 90.63% 2 位 89.35% 3 位 88.95%
Random CropやRandom Shiftといった基本的な Augmentationに加え、分割位置に対してロバストにな るように前処理によって得られた分割位置を学習時にラ ンダムで上下に少しずれるような処理を行なった。 また、学習率のスケジューリングをWarmupとRestart有 りCosine Annealingにすることで収束速度と精度が共に
向上した。
࣮ݧઃఆ ࠷ऴతʹɺϞσϧͷΞϯαϯϒϧʢՃॏฏۉʣͨ͠ͷ͕࠷ߴਫ਼ͱͳͬͨɻϞσϧɺಛྔந ग़Λߦ͏CBDLCPOF͕ҟͳΔ͚ͩͰ͋Γɺ͜ΕΒશͯ*NBHF/FUͰࣄલֶश͞Ε͍ͯΔɻ ˔ CBDLCPOFɿ 4&3FT/F9U %FOTF/FU *ODFQUJPOW ˔ ଛࣦؔɿ
$SPTT&OUSPQZ-PTT ˔ όοναΠζɿ ˔ ࠷దԽؔɿ NPNFOUVN4(%ʢNPNFOUVN XFJHIUEFDBZʣ ˔ εέδϡʔϥɿ 4(%3ʢMSɿd FQPDIDZDMFʣ ˔ ೖྗղ૾ɿY ˔ FQPDIɿ ˔ (16ɿ 5FTMBW (# (59 (# ˔ ͦͷଞɿ.JYFE1SFDJTJPOͰֶश
·ͱΊ • モデルは、特徴量抽出器としてImageNet等で成果を出しているCNNアーキテクチャ、クラス分類 器としては、隣接した画像の特徴を考慮するためにGRUを使用したネットワークを結合した構成。 • 前処理では、大津の二値化をしようして、良さそうな分割位置を推定。 • 分割位置に対してモデルがロバストに学習できるように学習時にランダムで位置を変化させる。 • 学習率をSGDRで変化させると大幅に精度と収束速度が上昇。
• 最も精度が高くなったモデルは、SE-ResNeXt, DenseNet, Inception-v4をアンサンブルさせたモ デル。 コードは公開しております。 https://github.com/katsura-jp/alcon23