Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
23回アルゴリズムコンテスト 1位解法
Search
catla
December 19, 2019
Research
6
670
23回アルゴリズムコンテスト 1位解法
2019年12月19日に大分大学で開かれたPRMU研究会における発表資料になります。
catla
December 19, 2019
Tweet
Share
More Decks by catla
See All by catla
ベイズ深層学習(6.3)
catla
2
220
ベイズ深層学習(6.2)
catla
3
230
[読み会資料] Federated Learning for Vision-and-Language Grounding Problems
catla
0
290
ベイズ深層学習(5.1~5.2)
catla
0
230
ベイズ深層学習(4.1)
catla
0
450
ベイズ深層学習(3.3~3.4)
catla
18
11k
ベイズ深層学習(2.2~2.4)
catla
6
1.3k
Learning Lightweight Lane Detection CNNs by Self Attention Distillation(ICCV2019)の紹介
catla
0
570
TGS Salt Identification Challenge 12th place solution
catla
3
11k
Other Decks in Research
See All in Research
SNLP2025:Can Language Models Reason about Individualistic Human Values and Preferences?
yukizenimoto
0
120
cvpaper.challenge 10年の軌跡 / cvpaper.challenge a decade-long journey
gatheluck
3
310
ストレス計測方法の確立に向けたマルチモーダルデータの活用
yurikomium
0
1.5k
「どう育てるか」より「どう働きたいか」〜スクラムマスターの最初の一歩〜
hirakawa51
0
860
データxデジタルマップで拓く ミラノ発・地域共創最前線
mapconcierge4agu
0
210
一人称視点映像解析の最先端(MIRU2025 チュートリアル)
takumayagi
6
3.5k
最適決定木を用いた処方的価格最適化
mickey_kubo
4
1.9k
20250624_熊本経済同友会6月例会講演
trafficbrain
1
610
Mechanistic Interpretability:解釈可能性研究の新たな潮流
koshiro_aoki
1
410
SegEarth-OV: Towards Training-Free Open-Vocabulary Segmentation for Remote Sensing Images
satai
3
180
Type Theory as a Formal Basis of Natural Language Semantics
daikimatsuoka
1
290
Adaptive Experimental Design for Efficient Average Treatment Effect Estimation and Treatment Choice
masakat0
0
160
Featured
See All Featured
For a Future-Friendly Web
brad_frost
180
9.9k
jQuery: Nuts, Bolts and Bling
dougneiner
64
7.9k
Fight the Zombie Pattern Library - RWD Summit 2016
marcelosomers
234
17k
[RailsConf 2023] Rails as a piece of cake
palkan
57
5.8k
A Tale of Four Properties
chriscoyier
160
23k
Imperfection Machines: The Place of Print at Facebook
scottboms
268
13k
Producing Creativity
orderedlist
PRO
347
40k
Principles of Awesome APIs and How to Build Them.
keavy
126
17k
The Pragmatic Product Professional
lauravandoore
36
6.9k
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
33
2.4k
Building Adaptive Systems
keathley
43
2.7k
Statistics for Hackers
jakevdp
799
220k
Transcript
ճΞϧΰϦζϜίϯςετ Ґ ղ๏ ஜେֶ ใֶ܈ ใՊֶྨ ஜେֶώϡʔϚϯίϯϐϡςʔγϣϯݚڀࣨ ॴଐ OBPLJLBUTVSB!IDPNQDTUTVLVCBBDKQ
ܡ ঘً 13.6ݚڀձ!େେֶ
ίϯςετ֓ཁ ίϯςετͷظؒɿ d ʢϲ݄ʣ ՝༰ɿ ( + 48 &
+ 3!%!% '(")accuracy* + $#+ 119,997 &#+ 16,387 1+ 388,146
લॲཧ
લॲཧ 標準正規分布の確率密度関数 を[-1, 1]の区間で等間隔で サンプリングしたベクトル。 二値化画像を横に合計を取っ たベクトルを見ると、文字部 分は山状になっている。
Ϟσϧͷશମ૾
݁Ռ 手元で評価( Cross validation )した時の認識率は、 ResNet < OctConv ResNet <
DenseNet < Inception-v4 < SE-ResNeXt となった。 モデル 認識率 OctConv ResNet50( 事前学習無し ) 89.59% SE-ResNeXt101( 事前学習有り ) 90.23% アンサンブル (SE-ResNeXt, DenseNet, Inception-v4) 90.63% 順位 最終結果のスコア 1 位 90.63% 2 位 89.35% 3 位 88.95%
Random CropやRandom Shiftといった基本的な Augmentationに加え、分割位置に対してロバストにな るように前処理によって得られた分割位置を学習時にラ ンダムで上下に少しずれるような処理を行なった。 また、学習率のスケジューリングをWarmupとRestart有 りCosine Annealingにすることで収束速度と精度が共に
向上した。
࣮ݧઃఆ ࠷ऴతʹɺϞσϧͷΞϯαϯϒϧʢՃॏฏۉʣͨ͠ͷ͕࠷ߴਫ਼ͱͳͬͨɻϞσϧɺಛྔந ग़Λߦ͏CBDLCPOF͕ҟͳΔ͚ͩͰ͋Γɺ͜ΕΒશͯ*NBHF/FUͰࣄલֶश͞Ε͍ͯΔɻ ˔ CBDLCPOFɿ 4&3FT/F9U %FOTF/FU *ODFQUJPOW ˔ ଛࣦؔɿ
$SPTT&OUSPQZ-PTT ˔ όοναΠζɿ ˔ ࠷దԽؔɿ NPNFOUVN4(%ʢNPNFOUVN XFJHIUEFDBZʣ ˔ εέδϡʔϥɿ 4(%3ʢMSɿd FQPDIDZDMFʣ ˔ ೖྗղ૾ɿY ˔ FQPDIɿ ˔ (16ɿ 5FTMBW (# (59 (# ˔ ͦͷଞɿ.JYFE1SFDJTJPOͰֶश
·ͱΊ • モデルは、特徴量抽出器としてImageNet等で成果を出しているCNNアーキテクチャ、クラス分類 器としては、隣接した画像の特徴を考慮するためにGRUを使用したネットワークを結合した構成。 • 前処理では、大津の二値化をしようして、良さそうな分割位置を推定。 • 分割位置に対してモデルがロバストに学習できるように学習時にランダムで位置を変化させる。 • 学習率をSGDRで変化させると大幅に精度と収束速度が上昇。
• 最も精度が高くなったモデルは、SE-ResNeXt, DenseNet, Inception-v4をアンサンブルさせたモ デル。 コードは公開しております。 https://github.com/katsura-jp/alcon23