Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Algorithms & Complexity
Search
Cheesecake Labs
April 05, 2018
Programming
0
37
Algorithms & Complexity
Frank Kair
Cheesecake Labs
April 05, 2018
Tweet
Share
More Decks by Cheesecake Labs
See All by Cheesecake Labs
Cats' wellness & care
cheesecakelabs
0
49
How do we create the first impressions?
cheesecakelabs
0
55
Menstrual cup: suit and freedom
cheesecakelabs
0
66
Life is a cycle, better with a bicycle
cheesecakelabs
0
51
Interview Process: how to get the best of people
cheesecakelabs
1
84
My capsule wardrobe experience
cheesecakelabs
3
60
Stonewall Rebellion and its impact on LGBTQIA+ history
cheesecakelabs
1
40
Pregnancy, childbirth and breastfeeding: What do I have to do with it?
cheesecakelabs
0
48
MBTI - Psychological types described by Jung
cheesecakelabs
0
130
Other Decks in Programming
See All in Programming
詳しくない分野でのVibe Codingで困ったことと学び/vibe-coding-in-unfamiliar-area
shibayu36
3
5k
NixOS + Kubernetesで構築する自宅サーバーのすべて
ichi_h3
0
830
dynamic!
moro
10
8k
20251016_Rails News ~Rails 8.1の足音を聴く~
morimorihoge
1
330
Go言語はstack overflowの夢を見るか?
logica0419
0
320
Go Conference 2025: Goで体感するMultipath TCP ― Go 1.24 時代の MPTCP Listener を理解する
takehaya
9
1.7k
なぜGoのジェネリクスはこの形なのか? Featherweight Goが明かす設計の核心
ryotaros
7
1.1k
Pull-Requestの内容を1クリックで動作確認可能にするワークフロー
natmark
2
510
TFLintカスタムプラグインで始める Terraformコード品質管理
bells17
2
170
私はどうやって技術力を上げたのか
yusukebe
43
18k
Server Side Kotlin Meetup vol.16: 内部動作を理解して ハイパフォーマンスなサーバサイド Kotlin アプリケーションを書こう
ternbusty
3
180
CSC305 Lecture 08
javiergs
PRO
0
200
Featured
See All Featured
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
9
980
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
20
1.2k
The World Runs on Bad Software
bkeepers
PRO
72
11k
CSS Pre-Processors: Stylus, Less & Sass
bermonpainter
359
30k
Side Projects
sachag
455
43k
Practical Orchestrator
shlominoach
190
11k
Build The Right Thing And Hit Your Dates
maggiecrowley
37
2.9k
Documentation Writing (for coders)
carmenintech
75
5.1k
The MySQL Ecosystem @ GitHub 2015
samlambert
251
13k
VelocityConf: Rendering Performance Case Studies
addyosmani
332
24k
GitHub's CSS Performance
jonrohan
1032
470k
Building a Modern Day E-commerce SEO Strategy
aleyda
44
7.8k
Transcript
Algorithms & Complexity Frank Kair
Last time...
Project Euler
polyglot-euler
polyglot-euler
polyglot-euler
Fibonacci example
Analysis of Algorithms Asymptotics / Complexity Theory
None
Applied Maths → Computer Science
Complexity Analysis We need a way to define the runtime
of an algorithm regardless of the machine it’s currently running on.
Linear Search
Binary Search
Big O Big O is a mathematical notation that describes
the limiting behaviour of a function when the argument tends towards a particular value or infinity.
The letter O is used because the growth rate of
a function is also referred to as the order of the function. [...] an upper bound on the growth rate of the function. Big O
Big O
Big O Length Iteration worst case 1 1 10 10
100 100 1000 1000 10000 10000 … ...
Big O
None
Big O
How do we profile these algorithms?
Just count the loops, then?
Merge Sort
Merge Sort
Merge Sort
Merge Sort O(n)
Merge Sort
Merge Sort O(n)
Merge Sort O(n) O(n)
Merge Sort O(n) O(n) ?
Merge Sort Recurrence relation T(n) = c if n ==
1 = 2T(n/2) + n
Merge Sort Recurrence relation T(n) = c if n ==
1 = 2T(n/2) + n T(n) = 2T(n/2) + n
Merge Sort Recurrence relation T(n) = c if n ==
1 = 2T(n/2) + n T(n) = 2T(n/2) + n = 2 [ 2T(n/4) + n/2 ] + n
Merge Sort Recurrence relation T(n) = c if n ==
1 = 2T(n/2) + n T(n) = 2T(n/2) + n = 2 [ 2T(n/4) + n/2 ] + n = 4T(n/4) + 2n = 4 [ 2T(n/8) n/4 ] + n = 8T(n/8) + 3n = 16T(n/16) + 4n = ... = (2^k)T(n/(2^k)) + kn
Recurrence relation T(n) = c if n == 1 =
2T(n/2) + n T(n) = (2^k)T(n/(2^k)) + kn T(1) = c Merge Sort
Recurrence relation T(n) = c if n == 1 =
2T(n/2) + n T(n) = (2^k)T(n/(2^k)) + kn T(1) = c n/(2^k) = 1 Merge Sort
Recurrence relation T(n) = c if n == 1 =
2T(n/2) + n T(n) = (2^k)T(n/(2^k)) + kn T(1) = c n/(2^k) = 1 2^k = n Merge Sort
Recurrence relation T(n) = c if n == 1 =
2T(n/2) + n T(n) = (2^k)T(n/(2^k)) + kn T(1) = c n/(2^k) = 1 2^k = n k = lg n Merge Sort
Recurrence relation T(n) = c if n == 1 =
2T(n/2) + n T(n) = (2^k)T(n/(2^k)) + kn k = lg n T(n) = Merge Sort
Recurrence relation T(n) = c if n == 1 =
2T(n/2) + n T(n) = (2^k)T(n/(2^k)) + kn k = lg n T(n) = (2^lg n)T(1) + n lg n Merge Sort
Merge Sort Recurrence relation T(n) = c if n ==
1 = 2T(n/2) + n T(n) = (2^k)T(n/(2^k)) + kn k = lg n T(n) = (2^lg n)T(1) + n lg n = cn + n lg n
Merge Sort Recurrence relation T(n) = c if n ==
1 = 2T(n/2) + n T(n) = (2^k)T(n/(2^k)) + kn k = lg n T(n) = (2^lg n)T(1) + n lg n = cn + n lg n O(n log n)
Does it matter?
Data Structures
Arrays vs Linked Lists
Binary Search Tree
B+ Trees
Back to Fibonacci… Why was it bad?
Fibonacci
Fibonacci
Fibonacci
Fibonacci
Fast Fibonacci
Paradigms / Techniques
Divide and Conquer Dynamic Programming Greedy Paradigms / Techniques
The Classics
Fast Fourier Transform Page Rank Dijkstra Miller-Rabin The Classics
Thank you!