Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Algorithms & Complexity
Search
Cheesecake Labs
April 05, 2018
Programming
0
36
Algorithms & Complexity
Frank Kair
Cheesecake Labs
April 05, 2018
Tweet
Share
More Decks by Cheesecake Labs
See All by Cheesecake Labs
Cats' wellness & care
cheesecakelabs
0
49
How do we create the first impressions?
cheesecakelabs
0
53
Menstrual cup: suit and freedom
cheesecakelabs
0
57
Life is a cycle, better with a bicycle
cheesecakelabs
0
51
Interview Process: how to get the best of people
cheesecakelabs
1
81
My capsule wardrobe experience
cheesecakelabs
3
58
Stonewall Rebellion and its impact on LGBTQIA+ history
cheesecakelabs
1
37
Pregnancy, childbirth and breastfeeding: What do I have to do with it?
cheesecakelabs
0
45
MBTI - Psychological types described by Jung
cheesecakelabs
0
130
Other Decks in Programming
See All in Programming
Azure AI Foundryではじめてのマルチエージェントワークフロー
seosoft
0
160
ニーリーにおけるプロダクトエンジニア
nealle
0
780
たった 1 枚の PHP ファイルで実装する MCP サーバ / MCP Server with Vanilla PHP
okashoi
1
230
Railsアプリケーションと パフォーマンスチューニング ー 秒間5万リクエストの モバイルオーダーシステムを支える事例 ー Rubyセミナー 大阪
falcon8823
5
1.1k
Composerが「依存解決」のためにどんな工夫をしているか #phpcon
o0h
PRO
1
250
PHP 8.4の新機能「プロパティフック」から学ぶオブジェクト指向設計とリスコフの置換原則
kentaroutakeda
2
750
来たるべき 8.0 に備えて React 19 新機能と React Router 固有機能の取捨選択とすり合わせを考える
oukayuka
2
910
AIエージェントはこう育てる - GitHub Copilot Agentとチームの共進化サイクル
koboriakira
0
510
Google Agent Development Kit でLINE Botを作ってみた
ymd65536
2
220
Systèmes distribués, pour le meilleur et pour le pire - BreizhCamp 2025 - Conférence
slecache
0
120
20250628_非エンジニアがバイブコーディングしてみた
ponponmikankan
0
660
チームのテスト力を総合的に鍛えて品質、スピード、レジリエンスを共立させる/Testing approach that improves quality, speed, and resilience
goyoki
3
500
Featured
See All Featured
Build The Right Thing And Hit Your Dates
maggiecrowley
36
2.8k
Become a Pro
speakerdeck
PRO
28
5.4k
What's in a price? How to price your products and services
michaelherold
246
12k
CSS Pre-Processors: Stylus, Less & Sass
bermonpainter
357
30k
The Art of Delivering Value - GDevCon NA Keynote
reverentgeek
15
1.5k
Bootstrapping a Software Product
garrettdimon
PRO
307
110k
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
18
960
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
130
19k
Balancing Empowerment & Direction
lara
1
410
Measuring & Analyzing Core Web Vitals
bluesmoon
7
500
The Psychology of Web Performance [Beyond Tellerrand 2023]
tammyeverts
48
2.9k
It's Worth the Effort
3n
185
28k
Transcript
Algorithms & Complexity Frank Kair
Last time...
Project Euler
polyglot-euler
polyglot-euler
polyglot-euler
Fibonacci example
Analysis of Algorithms Asymptotics / Complexity Theory
None
Applied Maths → Computer Science
Complexity Analysis We need a way to define the runtime
of an algorithm regardless of the machine it’s currently running on.
Linear Search
Binary Search
Big O Big O is a mathematical notation that describes
the limiting behaviour of a function when the argument tends towards a particular value or infinity.
The letter O is used because the growth rate of
a function is also referred to as the order of the function. [...] an upper bound on the growth rate of the function. Big O
Big O
Big O Length Iteration worst case 1 1 10 10
100 100 1000 1000 10000 10000 … ...
Big O
None
Big O
How do we profile these algorithms?
Just count the loops, then?
Merge Sort
Merge Sort
Merge Sort
Merge Sort O(n)
Merge Sort
Merge Sort O(n)
Merge Sort O(n) O(n)
Merge Sort O(n) O(n) ?
Merge Sort Recurrence relation T(n) = c if n ==
1 = 2T(n/2) + n
Merge Sort Recurrence relation T(n) = c if n ==
1 = 2T(n/2) + n T(n) = 2T(n/2) + n
Merge Sort Recurrence relation T(n) = c if n ==
1 = 2T(n/2) + n T(n) = 2T(n/2) + n = 2 [ 2T(n/4) + n/2 ] + n
Merge Sort Recurrence relation T(n) = c if n ==
1 = 2T(n/2) + n T(n) = 2T(n/2) + n = 2 [ 2T(n/4) + n/2 ] + n = 4T(n/4) + 2n = 4 [ 2T(n/8) n/4 ] + n = 8T(n/8) + 3n = 16T(n/16) + 4n = ... = (2^k)T(n/(2^k)) + kn
Recurrence relation T(n) = c if n == 1 =
2T(n/2) + n T(n) = (2^k)T(n/(2^k)) + kn T(1) = c Merge Sort
Recurrence relation T(n) = c if n == 1 =
2T(n/2) + n T(n) = (2^k)T(n/(2^k)) + kn T(1) = c n/(2^k) = 1 Merge Sort
Recurrence relation T(n) = c if n == 1 =
2T(n/2) + n T(n) = (2^k)T(n/(2^k)) + kn T(1) = c n/(2^k) = 1 2^k = n Merge Sort
Recurrence relation T(n) = c if n == 1 =
2T(n/2) + n T(n) = (2^k)T(n/(2^k)) + kn T(1) = c n/(2^k) = 1 2^k = n k = lg n Merge Sort
Recurrence relation T(n) = c if n == 1 =
2T(n/2) + n T(n) = (2^k)T(n/(2^k)) + kn k = lg n T(n) = Merge Sort
Recurrence relation T(n) = c if n == 1 =
2T(n/2) + n T(n) = (2^k)T(n/(2^k)) + kn k = lg n T(n) = (2^lg n)T(1) + n lg n Merge Sort
Merge Sort Recurrence relation T(n) = c if n ==
1 = 2T(n/2) + n T(n) = (2^k)T(n/(2^k)) + kn k = lg n T(n) = (2^lg n)T(1) + n lg n = cn + n lg n
Merge Sort Recurrence relation T(n) = c if n ==
1 = 2T(n/2) + n T(n) = (2^k)T(n/(2^k)) + kn k = lg n T(n) = (2^lg n)T(1) + n lg n = cn + n lg n O(n log n)
Does it matter?
Data Structures
Arrays vs Linked Lists
Binary Search Tree
B+ Trees
Back to Fibonacci… Why was it bad?
Fibonacci
Fibonacci
Fibonacci
Fibonacci
Fast Fibonacci
Paradigms / Techniques
Divide and Conquer Dynamic Programming Greedy Paradigms / Techniques
The Classics
Fast Fourier Transform Page Rank Dijkstra Miller-Rabin The Classics
Thank you!