Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Algorithms & Complexity
Search
Cheesecake Labs
April 05, 2018
Programming
0
36
Algorithms & Complexity
Frank Kair
Cheesecake Labs
April 05, 2018
Tweet
Share
More Decks by Cheesecake Labs
See All by Cheesecake Labs
Cats' wellness & care
cheesecakelabs
0
49
How do we create the first impressions?
cheesecakelabs
0
53
Menstrual cup: suit and freedom
cheesecakelabs
0
57
Life is a cycle, better with a bicycle
cheesecakelabs
0
51
Interview Process: how to get the best of people
cheesecakelabs
1
81
My capsule wardrobe experience
cheesecakelabs
3
58
Stonewall Rebellion and its impact on LGBTQIA+ history
cheesecakelabs
1
37
Pregnancy, childbirth and breastfeeding: What do I have to do with it?
cheesecakelabs
0
45
MBTI - Psychological types described by Jung
cheesecakelabs
0
130
Other Decks in Programming
See All in Programming
Hypervel - A Coroutine Framework for Laravel Artisans
albertcht
1
110
「Cursor/Devin全社導入の理想と現実」のその後
saitoryc
0
740
20250628_非エンジニアがバイブコーディングしてみた
ponponmikankan
0
650
なんとなくわかった気になるブロックテーマ入門/contents.nagoya 2025 6.28
chiilog
1
260
Azure AI Foundryではじめてのマルチエージェントワークフロー
seosoft
0
150
High-Level Programming Languages in AI Era -Human Thought and Mind-
hayat01sh1da
PRO
0
720
Blazing Fast UI Development with Compose Hot Reload (droidcon New York 2025)
zsmb
1
280
童醫院敏捷轉型的實踐經驗
cclai999
0
210
#kanrk08 / 公開版 PicoRubyとマイコンでの自作トレーニング計測装置を用いたワークアウトの理想と現実
bash0c7
1
680
XP, Testing and ninja testing
m_seki
3
230
設計やレビューに悩んでいるPHPerに贈る、クリーンなオブジェクト設計の指針たち
panda_program
6
1.9k
deno-redisの紹介とJSRパッケージの運用について (toranoana.deno #21)
uki00a
0
180
Featured
See All Featured
Being A Developer After 40
akosma
90
590k
A Tale of Four Properties
chriscoyier
160
23k
Java REST API Framework Comparison - PWX 2021
mraible
31
8.7k
The Art of Programming - Codeland 2020
erikaheidi
54
13k
Docker and Python
trallard
44
3.5k
jQuery: Nuts, Bolts and Bling
dougneiner
63
7.8k
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
331
22k
Exploring the Power of Turbo Streams & Action Cable | RailsConf2023
kevinliebholz
34
5.9k
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
30
2.1k
Making Projects Easy
brettharned
116
6.3k
Intergalactic Javascript Robots from Outer Space
tanoku
271
27k
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
8
680
Transcript
Algorithms & Complexity Frank Kair
Last time...
Project Euler
polyglot-euler
polyglot-euler
polyglot-euler
Fibonacci example
Analysis of Algorithms Asymptotics / Complexity Theory
None
Applied Maths → Computer Science
Complexity Analysis We need a way to define the runtime
of an algorithm regardless of the machine it’s currently running on.
Linear Search
Binary Search
Big O Big O is a mathematical notation that describes
the limiting behaviour of a function when the argument tends towards a particular value or infinity.
The letter O is used because the growth rate of
a function is also referred to as the order of the function. [...] an upper bound on the growth rate of the function. Big O
Big O
Big O Length Iteration worst case 1 1 10 10
100 100 1000 1000 10000 10000 … ...
Big O
None
Big O
How do we profile these algorithms?
Just count the loops, then?
Merge Sort
Merge Sort
Merge Sort
Merge Sort O(n)
Merge Sort
Merge Sort O(n)
Merge Sort O(n) O(n)
Merge Sort O(n) O(n) ?
Merge Sort Recurrence relation T(n) = c if n ==
1 = 2T(n/2) + n
Merge Sort Recurrence relation T(n) = c if n ==
1 = 2T(n/2) + n T(n) = 2T(n/2) + n
Merge Sort Recurrence relation T(n) = c if n ==
1 = 2T(n/2) + n T(n) = 2T(n/2) + n = 2 [ 2T(n/4) + n/2 ] + n
Merge Sort Recurrence relation T(n) = c if n ==
1 = 2T(n/2) + n T(n) = 2T(n/2) + n = 2 [ 2T(n/4) + n/2 ] + n = 4T(n/4) + 2n = 4 [ 2T(n/8) n/4 ] + n = 8T(n/8) + 3n = 16T(n/16) + 4n = ... = (2^k)T(n/(2^k)) + kn
Recurrence relation T(n) = c if n == 1 =
2T(n/2) + n T(n) = (2^k)T(n/(2^k)) + kn T(1) = c Merge Sort
Recurrence relation T(n) = c if n == 1 =
2T(n/2) + n T(n) = (2^k)T(n/(2^k)) + kn T(1) = c n/(2^k) = 1 Merge Sort
Recurrence relation T(n) = c if n == 1 =
2T(n/2) + n T(n) = (2^k)T(n/(2^k)) + kn T(1) = c n/(2^k) = 1 2^k = n Merge Sort
Recurrence relation T(n) = c if n == 1 =
2T(n/2) + n T(n) = (2^k)T(n/(2^k)) + kn T(1) = c n/(2^k) = 1 2^k = n k = lg n Merge Sort
Recurrence relation T(n) = c if n == 1 =
2T(n/2) + n T(n) = (2^k)T(n/(2^k)) + kn k = lg n T(n) = Merge Sort
Recurrence relation T(n) = c if n == 1 =
2T(n/2) + n T(n) = (2^k)T(n/(2^k)) + kn k = lg n T(n) = (2^lg n)T(1) + n lg n Merge Sort
Merge Sort Recurrence relation T(n) = c if n ==
1 = 2T(n/2) + n T(n) = (2^k)T(n/(2^k)) + kn k = lg n T(n) = (2^lg n)T(1) + n lg n = cn + n lg n
Merge Sort Recurrence relation T(n) = c if n ==
1 = 2T(n/2) + n T(n) = (2^k)T(n/(2^k)) + kn k = lg n T(n) = (2^lg n)T(1) + n lg n = cn + n lg n O(n log n)
Does it matter?
Data Structures
Arrays vs Linked Lists
Binary Search Tree
B+ Trees
Back to Fibonacci… Why was it bad?
Fibonacci
Fibonacci
Fibonacci
Fibonacci
Fast Fibonacci
Paradigms / Techniques
Divide and Conquer Dynamic Programming Greedy Paradigms / Techniques
The Classics
Fast Fourier Transform Page Rank Dijkstra Miller-Rabin The Classics
Thank you!