Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
論文読み会 AAAI2022 | MIP-GNN: A Data-Driven Framewo...
Search
cocomoff
January 04, 2023
Research
0
200
論文読み会 AAAI2022 | MIP-GNN: A Data-Driven Framework for Guiding Combinatorial Solvers
論文読み会の資料です.
(A slide for the paper-reading activity at my company, written in Japanese.)
cocomoff
January 04, 2023
Tweet
Share
More Decks by cocomoff
See All by cocomoff
論文読み会 NeurIPS2024 | UrbanKGent: A Unified Large Language Model Agent Framework for Urban Knowledge Graph Construction
cocomoff
1
14
論文読み会 AMAI | Personalized choice prediction with less user information
cocomoff
0
33
論文読み会 KDD2024 | Relevance meets Diversity: A User-Centric Framework for Knowledge Exploration through Recommendations
cocomoff
0
180
論文読み会 KDD2022 | Multi-Behavior Hypergraph-Enhanced Transformer for Sequential Recommendation
cocomoff
0
86
論文読み会 AISTATS2024 | Deep Learning-Based Alternative Route Computation
cocomoff
0
33
論文読み会 AAAI2021 | Knowledge-Enhanced Top-K Recommendation in Poincaré Ball
cocomoff
0
63
論文読み会 WWW2022 | Learning Probabilistic Box Embeddings for Effective and Efficient Ranking
cocomoff
0
270
ClimaX: A foundation model for weather and climate
cocomoff
0
540
論文読み会 EMNLP2021 | Decision-Focused Summarization
cocomoff
0
190
Other Decks in Research
See All in Research
NLP2025 WS Shared Task 文法誤り訂正部門 ehiMetrick
sugiyamaseiji
0
150
Weekly AI Agents News! 11月号 プロダクト/ニュースのアーカイブ
masatoto
0
320
PetiteSRE_GenAIEraにおけるインフラのあり方観察
ichichi
0
290
(NULLCON Goa 2025)Windows Keylogger Detection: Targeting Past and Present Keylogging Techniques
asuna_jp
1
310
言語モデルの内部機序:解析と解釈
eumesy
PRO
32
13k
Principled AI ~深層学習時代における課題解決の方法論~
taniai
1
270
Segment Any Change
satai
3
270
A Segment Anything Model based weakly supervised learning method for crop mapping using Sentinel-2 time series images
satai
3
190
Intrinsic Self-Supervision for Data Quality Audits
fabiangroeger
0
440
Mathematics in the Age of AI and the 4 Generation University
hachama
0
140
Batch Processing Algorithm for Elliptic Curve Operations and Its AVX-512 Implementation
herumi
0
140
Dynamic World, Near real-time global 10 m land use land cover mapping
satai
3
110
Featured
See All Featured
jQuery: Nuts, Bolts and Bling
dougneiner
63
7.7k
What's in a price? How to price your products and services
michaelherold
245
12k
Put a Button on it: Removing Barriers to Going Fast.
kastner
60
3.8k
Fireside Chat
paigeccino
37
3.3k
Typedesign – Prime Four
hannesfritz
41
2.6k
Building Better People: How to give real-time feedback that sticks.
wjessup
367
19k
Building an army of robots
kneath
304
45k
Bash Introduction
62gerente
611
210k
The Power of CSS Pseudo Elements
geoffreycrofte
75
5.7k
Unsuck your backbone
ammeep
670
57k
Site-Speed That Sticks
csswizardry
4
450
Reflections from 52 weeks, 52 projects
jeffersonlam
349
20k
Transcript
MIP-GNN: A Data-Driven Framework for Guiding Combinatorial Solvers 著者: Elias
B. Khalil, Christopher Morris, Andrea Lodi (Univ. of Toronto, McGill University, Cornell Tech) 学会: AAAI2022 @cocomoff 1/20
概要 やりたいこと 組合せ最適化ソルバーをデータ駆動型でサポートする 分枝限定法で どのノードを次に選択するか (node selection) どの変数を分枝するか (branching variable
selection) やったことの概要 0-1整数計画問題(Binary Linear Programming; BLP) を考える 表現力の高い問題クラス 具体的にはGISP (Generalized Independent Set Prolbem) / FCMNF (Fixed-Charge Multi-Commodity Flow problem) で実験 ソルバーを使ってそこそこの解を計算し、学習に使う 最適化問題の変数バイアス(Variable bias、後で説明)をGNNで推定 変数バイアスの予測値を使ってスコアリング手法を提案 ついでに解のwarm-startとかもできる 2/20
結果 GISPのベンチマークデータについて、MIP-GNNでサポートする分枝限定法とデフォ ルトの分枝限定法でどのようなパフォーマンス差が観測されたか Primal integral: 最適解と比べてある段階で見つかった解がどれぐらいのも のか、を解が見つかった時間で積分した評価値(?)、小さいと最適に近い Gap: ギャップ、小さいと最適に近い 3/20
目次 イントロ・結果 準備 分枝限定法 変数バイアス (Variable Bias) LP、BLP (0-1 ILP)
学習問題の設定 手法 (MIP-GNN) 実験 4/20
補足: 分枝限定法 Qiita: 「図で見る分枝限定法」より図を引用 ナップサック問題(あるアイテムについて、0 (入れない)・1 (入れる) を決める) node selection:
次にどの部分木を調べるか決める branching variable selection: まだ展開して決定していない二値変数のう ち、どれを次に展開するかを決める 5/20
補足: 変数バイアス CNF-SAT に対して定義された概念 [1] 例題: 3つの節、 変数の式 SATインスタンス 変数割当
が を充足する が真 補足: 変数バイアス(Bias) 充足可能な について、変数 の(推定された)バイアス分布 とは、 の充足可 能な割当について変数 が真 (または偽) で現れる割合を表す positive/negative bias ( ) 全ての変数についてのバイアスをベクトルに格納したものを Survey/Profile と呼ぶ 余談: 名前が一般的過ぎてググっても情報が出てこない… 要するに「どれぐらい真 (または偽)を取り得るか」の情報 [1] E.I. Hsu et al., Probabilistically Estimating Backbones and Variable Bias: Experimental Overview, Proceedings of CP2008, pp.613-617, 2008 / 同著者のAAAI2008 Workshopの論文もある。 6/20
補足: LP、BLP (0-1 ILP) 線形計画問題 (LP) は 3つ組 で定義される ぐらいの範囲を考える
feasible set LPの目的: Simplex法や内点法で解ける 整数線形計画問題 (ILP) は 3つ組 で定義される ただし feasible set に制限する場合、BLP (0-1 ILP) と呼ぶ あるBLPのインスタンス から整数性を落とした問題 を緩和問題と呼ぶ 分枝限定法 分枝操作と限定操作を用いた一般解法で全てのソルバーで使われている 分枝操作: 変数の場合分け 限定操作: 見積もった最適値による枝刈り 内部で切除平面法と合わせた場合に分枝切除法と呼ばれることも 7/20
目次 イントロ・結果 補足 分枝限定法 変数バイアス (Variable Bias) LP、BLP (0-1 ILP)
学習問題の設定 手法 (MIP-GNN) 実験 8/20
学習問題の設定 | BLPの場合の変数バイアス 実世界の何らかの分布から作られたインスタンスの集合 を考える あるインスタンス について、near-optimal solutions の集合 (tolerance
) を定義する 変数バイアスベクトル を以下で定義する -near optimal solutionの中で、各決定変数が だった割合のベクトル CNF-SATの変数バイアスのベクトル (Survey/Profile) と同じ 凄い強そうな情報だが、計算がヤバそう これを教師あり学習で近似する (MIP-GNN) のが提案アプローチ 9/20
学習問題の設定 | 教師あり学習 普通の教師あり学習を考える。記号: : インスタンス集合 の上の分布 : 有限の学習集合インスタンスの集合 (分布
でサンプル) 予測モデル はインスタンス の決定変数の集合 パラメータ ロス関数 教師あり学習 直感的には が面倒そうだけど、GNNに任せたらいけそう ポイント: 変数と制約に注目して、二部グラフを作った上でGNNを動かす 10/20
目次 イントロ・結果 補足 分枝限定法 変数バイアス (Variable Bias) LP、BLP (0-1 ILP)
学習問題の設定 手法 (MIP-GNN) 実験 11/20
MIP-GNN: 概要 変数と制約に注目した、二部グラフ上のGNNによるスコア計算 決定変数と制約に対応した特徴ベクトルを作る 制約に使われている決定変数と結んで二部グラフを作る いい感じにGNN (周辺の特徴のaggregation、特徴ベクトルのmerge) する 12/20
MIP-GNN: アーキテクチャ 二部グラフ (制約cと変数vのパート) v cの伝搬(左)、c v の伝搬(右) これを交互に繰り返す (iterate)
特徴ベクトル ( 層目): 目的関数の (紛らわしい) の情報もここに入れる v → c はベクトルの連結、普通のGNN c → v 各変数 に対して を求め、ベクトル を得る 制約 の違反量をsoftmaxで測定する: 誤差ベクトルは次段のvariable embedding更新に使う 13/20
MIP-GNN: 学習と評価 学習 -near optimal solutionを既存のソルバーで探して学習する 正確な値 を予測しなくても、 に近いかどうか?が知れたら十分に嬉しい しきい値
で加工した二値分類問題として学習させる もし であれば を、そうでなければ を当てる MIP-GNNで最後にMLPを通して推定したスコアは、以降の活用フェーズ(右側)では で表す 評価 | 確信スコア MLPを通して出力されたベクトル に対して、変数 の確信度を定義: は の近い方に丸める操作 どれぐらい予測が整数に近いかを表す 14/20
MIP-GNN: 分枝限定法への活用 数値の確信度を使って、分枝限定法のノード選択スコアを定義する BnBで既に確定している変数と予測値が一致していればその確信度を、そうで なければ乖離している具合を使ってスコアに入れる もう少し真面目な定義は論文へ 15/20
MIP-GNN: 解のwarm-start スコアを見て、直接近似解を求められそう: しきい値 を用いて 適当に丸めているだけなのでfeasibleではない解になる、CPLEXには壊れた解を feasibleに直す機能(repair)があるので、それに突っ込めばOK よく知りません… (これはただのメモ) node-selection、branching
variable selection、warm-startの3要素 branching variable selectionはサポートしてない(説明なし?)? ついでに、ソルバーを使って -near optimal solutionの準備は必要なので、 それはそれで大変な気がする(60分と書いてあった、詳細は知らない) 16/20
目次 イントロ・結果 補足 分枝限定法 変数バイアス (Variable Bias) LP、BLP (0-1 ILP)
学習問題の設定 手法 (MIP-GNN) 実験 17/20
実験結果 | GISPの性能 (再掲) そこそこ良い (node-selectionのサポートあり vs なし) 18/20
実験結果 | パラメータとGNNアーキテクチャ 途中で出てきたしきい値 の影響 GNNの具体的なアーキテクチャ: GIN、GraphSage、EC (EdgeConvolution) 大きく差はない 19/20
実験結果 | 転移学習 問題集合間の転移: 効果的だったり、そうでもなかったりした GISPとFCMNFがあると書いてあったけど、FCMNFは載ってなかった(どこかの Appendixにあるらしい) 20/20