Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
論文読み会 AAAI2022 | MIP-GNN: A Data-Driven Framewo...
Search
cocomoff
January 04, 2023
Research
0
170
論文読み会 AAAI2022 | MIP-GNN: A Data-Driven Framework for Guiding Combinatorial Solvers
論文読み会の資料です.
(A slide for the paper-reading activity at my company, written in Japanese.)
cocomoff
January 04, 2023
Tweet
Share
More Decks by cocomoff
See All by cocomoff
論文読み会 KDD2024 | Relevance meets Diversity: A User-Centric Framework for Knowledge Exploration through Recommendations
cocomoff
0
110
論文読み会 KDD2022 | Multi-Behavior Hypergraph-Enhanced Transformer for Sequential Recommendation
cocomoff
0
42
論文読み会 AISTATS2024 | Deep Learning-Based Alternative Route Computation
cocomoff
0
19
論文読み会 AAAI2021 | Knowledge-Enhanced Top-K Recommendation in Poincaré Ball
cocomoff
0
54
論文読み会 WWW2022 | Learning Probabilistic Box Embeddings for Effective and Efficient Ranking
cocomoff
0
260
ClimaX: A foundation model for weather and climate
cocomoff
0
470
論文読み会 EMNLP2021 | Decision-Focused Summarization
cocomoff
0
170
論文読み会 AAAI2022 | Online Certification of Preference-based Fairness for Personalized Recommender Systems
cocomoff
0
410
論文読み会 HT2010 | Automatic Construction of Travel Itineraries Using Social Breadcrumbs
cocomoff
0
91
Other Decks in Research
See All in Research
Weekly AI Agents News! 10月号 プロダクト/ニュースのアーカイブ
masatoto
1
150
Weekly AI Agents News!
masatoto
26
34k
2024/10/30 産総研AIセミナー発表資料
keisuke198619
1
380
言語と数理の交差点:テキストの埋め込みと構造のモデル化 (IBIS 2024 チュートリアル)
yukiar
4
920
国際会議ACL2024参加報告
chemical_tree
1
350
機械学習でヒトの行動を変える
hiromu1996
1
380
医療支援AI開発における臨床と情報学の連携を円滑に進めるために
moda0
0
120
LiDARとカメラのセンサーフュージョンによる点群からのノイズ除去
kentaitakura
0
180
Language is primarily a tool for communication rather than thought
ryou0634
4
790
メタヒューリスティクスに基づく汎用線形整数計画ソルバーの開発
snowberryfield
3
620
論文紹介: COSMO: A Large-Scale E-commerce Common Sense Knowledge Generation and Serving System at Amazon (SIGMOD 2024)
ynakano
1
200
ECCV2024読み会: Minimalist Vision with Freeform Pixels
hsmtta
1
300
Featured
See All Featured
Practical Orchestrator
shlominoach
186
10k
The MySQL Ecosystem @ GitHub 2015
samlambert
250
12k
Producing Creativity
orderedlist
PRO
341
39k
The Art of Delivering Value - GDevCon NA Keynote
reverentgeek
8
1.2k
The Power of CSS Pseudo Elements
geoffreycrofte
73
5.4k
Building a Modern Day E-commerce SEO Strategy
aleyda
38
7k
Principles of Awesome APIs and How to Build Them.
keavy
126
17k
Why You Should Never Use an ORM
jnunemaker
PRO
54
9.1k
The World Runs on Bad Software
bkeepers
PRO
65
11k
Designing for Performance
lara
604
68k
RailsConf 2023
tenderlove
29
940
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
47
5.1k
Transcript
MIP-GNN: A Data-Driven Framework for Guiding Combinatorial Solvers 著者: Elias
B. Khalil, Christopher Morris, Andrea Lodi (Univ. of Toronto, McGill University, Cornell Tech) 学会: AAAI2022 @cocomoff 1/20
概要 やりたいこと 組合せ最適化ソルバーをデータ駆動型でサポートする 分枝限定法で どのノードを次に選択するか (node selection) どの変数を分枝するか (branching variable
selection) やったことの概要 0-1整数計画問題(Binary Linear Programming; BLP) を考える 表現力の高い問題クラス 具体的にはGISP (Generalized Independent Set Prolbem) / FCMNF (Fixed-Charge Multi-Commodity Flow problem) で実験 ソルバーを使ってそこそこの解を計算し、学習に使う 最適化問題の変数バイアス(Variable bias、後で説明)をGNNで推定 変数バイアスの予測値を使ってスコアリング手法を提案 ついでに解のwarm-startとかもできる 2/20
結果 GISPのベンチマークデータについて、MIP-GNNでサポートする分枝限定法とデフォ ルトの分枝限定法でどのようなパフォーマンス差が観測されたか Primal integral: 最適解と比べてある段階で見つかった解がどれぐらいのも のか、を解が見つかった時間で積分した評価値(?)、小さいと最適に近い Gap: ギャップ、小さいと最適に近い 3/20
目次 イントロ・結果 準備 分枝限定法 変数バイアス (Variable Bias) LP、BLP (0-1 ILP)
学習問題の設定 手法 (MIP-GNN) 実験 4/20
補足: 分枝限定法 Qiita: 「図で見る分枝限定法」より図を引用 ナップサック問題(あるアイテムについて、0 (入れない)・1 (入れる) を決める) node selection:
次にどの部分木を調べるか決める branching variable selection: まだ展開して決定していない二値変数のう ち、どれを次に展開するかを決める 5/20
補足: 変数バイアス CNF-SAT に対して定義された概念 [1] 例題: 3つの節、 変数の式 SATインスタンス 変数割当
が を充足する が真 補足: 変数バイアス(Bias) 充足可能な について、変数 の(推定された)バイアス分布 とは、 の充足可 能な割当について変数 が真 (または偽) で現れる割合を表す positive/negative bias ( ) 全ての変数についてのバイアスをベクトルに格納したものを Survey/Profile と呼ぶ 余談: 名前が一般的過ぎてググっても情報が出てこない… 要するに「どれぐらい真 (または偽)を取り得るか」の情報 [1] E.I. Hsu et al., Probabilistically Estimating Backbones and Variable Bias: Experimental Overview, Proceedings of CP2008, pp.613-617, 2008 / 同著者のAAAI2008 Workshopの論文もある。 6/20
補足: LP、BLP (0-1 ILP) 線形計画問題 (LP) は 3つ組 で定義される ぐらいの範囲を考える
feasible set LPの目的: Simplex法や内点法で解ける 整数線形計画問題 (ILP) は 3つ組 で定義される ただし feasible set に制限する場合、BLP (0-1 ILP) と呼ぶ あるBLPのインスタンス から整数性を落とした問題 を緩和問題と呼ぶ 分枝限定法 分枝操作と限定操作を用いた一般解法で全てのソルバーで使われている 分枝操作: 変数の場合分け 限定操作: 見積もった最適値による枝刈り 内部で切除平面法と合わせた場合に分枝切除法と呼ばれることも 7/20
目次 イントロ・結果 補足 分枝限定法 変数バイアス (Variable Bias) LP、BLP (0-1 ILP)
学習問題の設定 手法 (MIP-GNN) 実験 8/20
学習問題の設定 | BLPの場合の変数バイアス 実世界の何らかの分布から作られたインスタンスの集合 を考える あるインスタンス について、near-optimal solutions の集合 (tolerance
) を定義する 変数バイアスベクトル を以下で定義する -near optimal solutionの中で、各決定変数が だった割合のベクトル CNF-SATの変数バイアスのベクトル (Survey/Profile) と同じ 凄い強そうな情報だが、計算がヤバそう これを教師あり学習で近似する (MIP-GNN) のが提案アプローチ 9/20
学習問題の設定 | 教師あり学習 普通の教師あり学習を考える。記号: : インスタンス集合 の上の分布 : 有限の学習集合インスタンスの集合 (分布
でサンプル) 予測モデル はインスタンス の決定変数の集合 パラメータ ロス関数 教師あり学習 直感的には が面倒そうだけど、GNNに任せたらいけそう ポイント: 変数と制約に注目して、二部グラフを作った上でGNNを動かす 10/20
目次 イントロ・結果 補足 分枝限定法 変数バイアス (Variable Bias) LP、BLP (0-1 ILP)
学習問題の設定 手法 (MIP-GNN) 実験 11/20
MIP-GNN: 概要 変数と制約に注目した、二部グラフ上のGNNによるスコア計算 決定変数と制約に対応した特徴ベクトルを作る 制約に使われている決定変数と結んで二部グラフを作る いい感じにGNN (周辺の特徴のaggregation、特徴ベクトルのmerge) する 12/20
MIP-GNN: アーキテクチャ 二部グラフ (制約cと変数vのパート) v cの伝搬(左)、c v の伝搬(右) これを交互に繰り返す (iterate)
特徴ベクトル ( 層目): 目的関数の (紛らわしい) の情報もここに入れる v → c はベクトルの連結、普通のGNN c → v 各変数 に対して を求め、ベクトル を得る 制約 の違反量をsoftmaxで測定する: 誤差ベクトルは次段のvariable embedding更新に使う 13/20
MIP-GNN: 学習と評価 学習 -near optimal solutionを既存のソルバーで探して学習する 正確な値 を予測しなくても、 に近いかどうか?が知れたら十分に嬉しい しきい値
で加工した二値分類問題として学習させる もし であれば を、そうでなければ を当てる MIP-GNNで最後にMLPを通して推定したスコアは、以降の活用フェーズ(右側)では で表す 評価 | 確信スコア MLPを通して出力されたベクトル に対して、変数 の確信度を定義: は の近い方に丸める操作 どれぐらい予測が整数に近いかを表す 14/20
MIP-GNN: 分枝限定法への活用 数値の確信度を使って、分枝限定法のノード選択スコアを定義する BnBで既に確定している変数と予測値が一致していればその確信度を、そうで なければ乖離している具合を使ってスコアに入れる もう少し真面目な定義は論文へ 15/20
MIP-GNN: 解のwarm-start スコアを見て、直接近似解を求められそう: しきい値 を用いて 適当に丸めているだけなのでfeasibleではない解になる、CPLEXには壊れた解を feasibleに直す機能(repair)があるので、それに突っ込めばOK よく知りません… (これはただのメモ) node-selection、branching
variable selection、warm-startの3要素 branching variable selectionはサポートしてない(説明なし?)? ついでに、ソルバーを使って -near optimal solutionの準備は必要なので、 それはそれで大変な気がする(60分と書いてあった、詳細は知らない) 16/20
目次 イントロ・結果 補足 分枝限定法 変数バイアス (Variable Bias) LP、BLP (0-1 ILP)
学習問題の設定 手法 (MIP-GNN) 実験 17/20
実験結果 | GISPの性能 (再掲) そこそこ良い (node-selectionのサポートあり vs なし) 18/20
実験結果 | パラメータとGNNアーキテクチャ 途中で出てきたしきい値 の影響 GNNの具体的なアーキテクチャ: GIN、GraphSage、EC (EdgeConvolution) 大きく差はない 19/20
実験結果 | 転移学習 問題集合間の転移: 効果的だったり、そうでもなかったりした GISPとFCMNFがあると書いてあったけど、FCMNFは載ってなかった(どこかの Appendixにあるらしい) 20/20