Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
論文読み会 AAAI2022 | MIP-GNN: A Data-Driven Framewo...
Search
cocomoff
January 04, 2023
Research
0
160
論文読み会 AAAI2022 | MIP-GNN: A Data-Driven Framework for Guiding Combinatorial Solvers
論文読み会の資料です.
(A slide for the paper-reading activity at my company, written in Japanese.)
cocomoff
January 04, 2023
Tweet
Share
More Decks by cocomoff
See All by cocomoff
論文読み会 KDD2024 | Relevance meets Diversity: A User-Centric Framework for Knowledge Exploration through Recommendations
cocomoff
0
82
論文読み会 KDD2022 | Multi-Behavior Hypergraph-Enhanced Transformer for Sequential Recommendation
cocomoff
0
29
論文読み会 AISTATS2024 | Deep Learning-Based Alternative Route Computation
cocomoff
0
15
論文読み会 AAAI2021 | Knowledge-Enhanced Top-K Recommendation in Poincaré Ball
cocomoff
0
52
論文読み会 WWW2022 | Learning Probabilistic Box Embeddings for Effective and Efficient Ranking
cocomoff
0
250
ClimaX: A foundation model for weather and climate
cocomoff
0
450
論文読み会 EMNLP2021 | Decision-Focused Summarization
cocomoff
0
170
論文読み会 AAAI2022 | Online Certification of Preference-based Fairness for Personalized Recommender Systems
cocomoff
0
410
論文読み会 HT2010 | Automatic Construction of Travel Itineraries Using Social Breadcrumbs
cocomoff
0
91
Other Decks in Research
See All in Research
MIRU2024チュートリアル「様々なセンサやモダリティを用いたシーン状態推定」
miso2024
4
2.2k
Isotropy, Clusters, and Classifiers
hpprc
3
630
KDD論文読み会2024: False Positive in A/B Tests
ryotoitoi
0
200
授業評価アンケートのテキストマイニング
langstat
1
360
メールからの名刺情報抽出におけるLLM活用 / Use of LLM in extracting business card information from e-mails
sansan_randd
2
140
Leveraging LLMs for Unsupervised Dense Retriever Ranking (SIGIR 2024)
kampersanda
2
190
文書画像のデータ化における VLM活用 / Use of VLM in document image data conversion
sansan_randd
2
190
Language is primarily a tool for communication rather than thought
ryou0634
4
740
Weekly AI Agents News! 8月号 論文のアーカイブ
masatoto
1
180
言語と数理の交差点:テキストの埋め込みと構造のモデル化 (IBIS 2024 チュートリアル)
yukiar
3
720
第 2 部 11 章「大規模言語モデルの研究開発から実運用に向けて」に向けて / MLOps Book Chapter 11
upura
0
380
Active Adaptive Experimental Design for Treatment Effect Estimation with Covariate Choices
masakat0
0
220
Featured
See All Featured
Easily Structure & Communicate Ideas using Wireframe
afnizarnur
191
16k
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
250
21k
Optimizing for Happiness
mojombo
376
70k
A designer walks into a library…
pauljervisheath
203
24k
BBQ
matthewcrist
85
9.3k
Why Our Code Smells
bkeepers
PRO
334
57k
Dealing with People You Can't Stand - Big Design 2015
cassininazir
364
24k
Intergalactic Javascript Robots from Outer Space
tanoku
269
27k
CoffeeScript is Beautiful & I Never Want to Write Plain JavaScript Again
sstephenson
159
15k
Into the Great Unknown - MozCon
thekraken
32
1.5k
The Pragmatic Product Professional
lauravandoore
31
6.3k
Measuring & Analyzing Core Web Vitals
bluesmoon
4
120
Transcript
MIP-GNN: A Data-Driven Framework for Guiding Combinatorial Solvers 著者: Elias
B. Khalil, Christopher Morris, Andrea Lodi (Univ. of Toronto, McGill University, Cornell Tech) 学会: AAAI2022 @cocomoff 1/20
概要 やりたいこと 組合せ最適化ソルバーをデータ駆動型でサポートする 分枝限定法で どのノードを次に選択するか (node selection) どの変数を分枝するか (branching variable
selection) やったことの概要 0-1整数計画問題(Binary Linear Programming; BLP) を考える 表現力の高い問題クラス 具体的にはGISP (Generalized Independent Set Prolbem) / FCMNF (Fixed-Charge Multi-Commodity Flow problem) で実験 ソルバーを使ってそこそこの解を計算し、学習に使う 最適化問題の変数バイアス(Variable bias、後で説明)をGNNで推定 変数バイアスの予測値を使ってスコアリング手法を提案 ついでに解のwarm-startとかもできる 2/20
結果 GISPのベンチマークデータについて、MIP-GNNでサポートする分枝限定法とデフォ ルトの分枝限定法でどのようなパフォーマンス差が観測されたか Primal integral: 最適解と比べてある段階で見つかった解がどれぐらいのも のか、を解が見つかった時間で積分した評価値(?)、小さいと最適に近い Gap: ギャップ、小さいと最適に近い 3/20
目次 イントロ・結果 準備 分枝限定法 変数バイアス (Variable Bias) LP、BLP (0-1 ILP)
学習問題の設定 手法 (MIP-GNN) 実験 4/20
補足: 分枝限定法 Qiita: 「図で見る分枝限定法」より図を引用 ナップサック問題(あるアイテムについて、0 (入れない)・1 (入れる) を決める) node selection:
次にどの部分木を調べるか決める branching variable selection: まだ展開して決定していない二値変数のう ち、どれを次に展開するかを決める 5/20
補足: 変数バイアス CNF-SAT に対して定義された概念 [1] 例題: 3つの節、 変数の式 SATインスタンス 変数割当
が を充足する が真 補足: 変数バイアス(Bias) 充足可能な について、変数 の(推定された)バイアス分布 とは、 の充足可 能な割当について変数 が真 (または偽) で現れる割合を表す positive/negative bias ( ) 全ての変数についてのバイアスをベクトルに格納したものを Survey/Profile と呼ぶ 余談: 名前が一般的過ぎてググっても情報が出てこない… 要するに「どれぐらい真 (または偽)を取り得るか」の情報 [1] E.I. Hsu et al., Probabilistically Estimating Backbones and Variable Bias: Experimental Overview, Proceedings of CP2008, pp.613-617, 2008 / 同著者のAAAI2008 Workshopの論文もある。 6/20
補足: LP、BLP (0-1 ILP) 線形計画問題 (LP) は 3つ組 で定義される ぐらいの範囲を考える
feasible set LPの目的: Simplex法や内点法で解ける 整数線形計画問題 (ILP) は 3つ組 で定義される ただし feasible set に制限する場合、BLP (0-1 ILP) と呼ぶ あるBLPのインスタンス から整数性を落とした問題 を緩和問題と呼ぶ 分枝限定法 分枝操作と限定操作を用いた一般解法で全てのソルバーで使われている 分枝操作: 変数の場合分け 限定操作: 見積もった最適値による枝刈り 内部で切除平面法と合わせた場合に分枝切除法と呼ばれることも 7/20
目次 イントロ・結果 補足 分枝限定法 変数バイアス (Variable Bias) LP、BLP (0-1 ILP)
学習問題の設定 手法 (MIP-GNN) 実験 8/20
学習問題の設定 | BLPの場合の変数バイアス 実世界の何らかの分布から作られたインスタンスの集合 を考える あるインスタンス について、near-optimal solutions の集合 (tolerance
) を定義する 変数バイアスベクトル を以下で定義する -near optimal solutionの中で、各決定変数が だった割合のベクトル CNF-SATの変数バイアスのベクトル (Survey/Profile) と同じ 凄い強そうな情報だが、計算がヤバそう これを教師あり学習で近似する (MIP-GNN) のが提案アプローチ 9/20
学習問題の設定 | 教師あり学習 普通の教師あり学習を考える。記号: : インスタンス集合 の上の分布 : 有限の学習集合インスタンスの集合 (分布
でサンプル) 予測モデル はインスタンス の決定変数の集合 パラメータ ロス関数 教師あり学習 直感的には が面倒そうだけど、GNNに任せたらいけそう ポイント: 変数と制約に注目して、二部グラフを作った上でGNNを動かす 10/20
目次 イントロ・結果 補足 分枝限定法 変数バイアス (Variable Bias) LP、BLP (0-1 ILP)
学習問題の設定 手法 (MIP-GNN) 実験 11/20
MIP-GNN: 概要 変数と制約に注目した、二部グラフ上のGNNによるスコア計算 決定変数と制約に対応した特徴ベクトルを作る 制約に使われている決定変数と結んで二部グラフを作る いい感じにGNN (周辺の特徴のaggregation、特徴ベクトルのmerge) する 12/20
MIP-GNN: アーキテクチャ 二部グラフ (制約cと変数vのパート) v cの伝搬(左)、c v の伝搬(右) これを交互に繰り返す (iterate)
特徴ベクトル ( 層目): 目的関数の (紛らわしい) の情報もここに入れる v → c はベクトルの連結、普通のGNN c → v 各変数 に対して を求め、ベクトル を得る 制約 の違反量をsoftmaxで測定する: 誤差ベクトルは次段のvariable embedding更新に使う 13/20
MIP-GNN: 学習と評価 学習 -near optimal solutionを既存のソルバーで探して学習する 正確な値 を予測しなくても、 に近いかどうか?が知れたら十分に嬉しい しきい値
で加工した二値分類問題として学習させる もし であれば を、そうでなければ を当てる MIP-GNNで最後にMLPを通して推定したスコアは、以降の活用フェーズ(右側)では で表す 評価 | 確信スコア MLPを通して出力されたベクトル に対して、変数 の確信度を定義: は の近い方に丸める操作 どれぐらい予測が整数に近いかを表す 14/20
MIP-GNN: 分枝限定法への活用 数値の確信度を使って、分枝限定法のノード選択スコアを定義する BnBで既に確定している変数と予測値が一致していればその確信度を、そうで なければ乖離している具合を使ってスコアに入れる もう少し真面目な定義は論文へ 15/20
MIP-GNN: 解のwarm-start スコアを見て、直接近似解を求められそう: しきい値 を用いて 適当に丸めているだけなのでfeasibleではない解になる、CPLEXには壊れた解を feasibleに直す機能(repair)があるので、それに突っ込めばOK よく知りません… (これはただのメモ) node-selection、branching
variable selection、warm-startの3要素 branching variable selectionはサポートしてない(説明なし?)? ついでに、ソルバーを使って -near optimal solutionの準備は必要なので、 それはそれで大変な気がする(60分と書いてあった、詳細は知らない) 16/20
目次 イントロ・結果 補足 分枝限定法 変数バイアス (Variable Bias) LP、BLP (0-1 ILP)
学習問題の設定 手法 (MIP-GNN) 実験 17/20
実験結果 | GISPの性能 (再掲) そこそこ良い (node-selectionのサポートあり vs なし) 18/20
実験結果 | パラメータとGNNアーキテクチャ 途中で出てきたしきい値 の影響 GNNの具体的なアーキテクチャ: GIN、GraphSage、EC (EdgeConvolution) 大きく差はない 19/20
実験結果 | 転移学習 問題集合間の転移: 効果的だったり、そうでもなかったりした GISPとFCMNFがあると書いてあったけど、FCMNFは載ってなかった(どこかの Appendixにあるらしい) 20/20