Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
論文読み会 AAAI2021 | Knowledge-Enhanced Top-K Recom...
Search
cocomoff
July 04, 2023
Research
0
58
論文読み会 AAAI2021 | Knowledge-Enhanced Top-K Recommendation in Poincaré Ball
論文読み会の資料です.
(A slide for the paper-reading activity at my company, written in Japanese.)
cocomoff
July 04, 2023
Tweet
Share
More Decks by cocomoff
See All by cocomoff
論文読み会 AMAI | Personalized choice prediction with less user information
cocomoff
0
13
論文読み会 KDD2024 | Relevance meets Diversity: A User-Centric Framework for Knowledge Exploration through Recommendations
cocomoff
0
160
論文読み会 KDD2022 | Multi-Behavior Hypergraph-Enhanced Transformer for Sequential Recommendation
cocomoff
0
70
論文読み会 AISTATS2024 | Deep Learning-Based Alternative Route Computation
cocomoff
0
29
論文読み会 WWW2022 | Learning Probabilistic Box Embeddings for Effective and Efficient Ranking
cocomoff
0
260
ClimaX: A foundation model for weather and climate
cocomoff
0
520
論文読み会 AAAI2022 | MIP-GNN: A Data-Driven Framework for Guiding Combinatorial Solvers
cocomoff
0
180
論文読み会 EMNLP2021 | Decision-Focused Summarization
cocomoff
0
180
論文読み会 AAAI2022 | Online Certification of Preference-based Fairness for Personalized Recommender Systems
cocomoff
0
420
Other Decks in Research
See All in Research
PetiteSRE_GenAIEraにおけるインフラのあり方観察
ichichi
0
270
NeurIPS 2024 参加報告 & 論文紹介 (SACPO, Ctrl-G)
reisato12345
0
320
文化が形作る音楽推薦の消費と、その逆
kuri8ive
0
240
研究を支える拡張性の高い ワークフローツールの提案 / Proposal of highly expandable workflow tools to support research
linyows
0
300
Building Height Estimation Using Shadow Length in Satellite Imagery
satai
2
190
2038年問題が思ったよりヤバい。検出ツールを作って脅威性評価してみた論文 | Kansai Open Forum 2024
ran350
8
3.8k
한국어 오픈소스 거대 언어 모델의 가능성: 새로운 시대의 언어 이해와 생성
inureyes
PRO
0
220
メタヒューリスティクスに基づく汎用線形整数計画ソルバーの開発
snowberryfield
3
760
新規のC言語処理系を実装することによる 組込みシステム研究にもたらす価値 についての考察
zacky1972
1
320
AWS 音声基盤モデル トーク解析AI MiiTelの音声処理について
ken57
0
130
「熊本県内バス・電車無料デー」の振り返りとその後の展開@土木計画学SS:成功失敗事例に学ぶ公共交通運賃設定
trafficbrain
0
210
VisFocus: Prompt-Guided Vision Encoders for OCR-Free Dense Document Understanding
sansan_randd
1
460
Featured
See All Featured
Rails Girls Zürich Keynote
gr2m
94
13k
Fashionably flexible responsive web design (full day workshop)
malarkey
406
66k
Facilitating Awesome Meetings
lara
51
6.2k
Building a Scalable Design System with Sketch
lauravandoore
461
33k
Learning to Love Humans: Emotional Interface Design
aarron
273
40k
A Modern Web Designer's Workflow
chriscoyier
693
190k
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
280
13k
The Cost Of JavaScript in 2023
addyosmani
47
7.3k
Code Reviewing Like a Champion
maltzj
521
39k
Fantastic passwords and where to find them - at NoRuKo
philnash
51
3k
Become a Pro
speakerdeck
PRO
26
5.1k
Building an army of robots
kneath
303
45k
Transcript
Knowledge-Enhanced Top-K Recommendation in Poincaré Ball 著者: Chen Ma, Liheng
Ma, Yingxue Zhang, Haolun Wu, Xue Liu, Mark Coates (McGill Univ. & Huawei Noah's Ark Lab Montreal) 学会: AAAI2021 2023-7-4 @cocomoff 1/17
発表の内容 推薦モデル + 知識グラフ 推薦モデル: 過去のログから (未知) アイテムの評価値を推定する 知識グラフ: 外部知識を表現する
(e.g., 同じ監督の作品; directed_by) 著者らの4つの貢献 (3つの技術的な貢献+実験) (1) 双極空間を活用した推薦(RS)+知識グラフ(KG)を提案した (2) KGの情報を活用するためにアテンションのような構造を導入した (3) ハイパーパラメータに対処するためにバイレベル最適化を導入した (4) 実験で性能を確認した 2/17
概要 (イントロ) 推薦モデル (例: アイテムの評価値を計算する) + 知識グラフ (例: 同じ監督) KG活用のこれまでのアプローチと課題
[アプローチ] Path-based: KG上の経路を使って高次の情報を活用する [アプローチ] Regularization-based: KG由来のロスを追加する [課題] KG埋め込みがユークリッド空間 [課題] KG上で隣接するentityの扱いが効率的ではなかった [課題] KG由来のロスを制御するハイパーパラメータの調整が難しかった 提案手法 (後述) は前ページの3つの技術的な貢献によって良い性能を出した 3/17
(1) 双極空間を活用した推薦(RS)+知識グラフ(KG)を提案した (2) KGの情報を活用するためにアテンションのような構造を導入した 4/17
ポアンカレ埋め込みの復習 非ユークリッド空間の1つである、双極空間に埋め 込む手法の代表例 (NeurIPS2017) 次元 、半径 の空間 ; . 局所的な測り方
ユークリッド空間: ; 円周に近づくと無限 距離 (歪んでるので測地線を使う) として : メビウス和 (右) 歴史的には他にもあった 勾配法は少し改造 (Riemannian SGD) 勾配を求めて、軽量を直して (歪み補正)、更新して、歪んだ空間に戻す 5/17
埋め込みベクトルとランキングロス・知識グラフ ランキングロス [前ページ] ベクトル の間の距離 が得られた ユーザ と アイテム の距離
を用いてランキングロスを考える ユーザ 、正例 、負例 について: KG 知識グラフ あるアイテム のKG情報 TransE-styleの埋め込みを考える (ユークリッド空間で のこと) ポアンカレ空間上の距離が近いと大きくなる重み 6/17
知識グラフの活用 近傍の情報を集約すれば良いが、曲がっている空間で重み付き集約できるのか 提案手法: hyperbolic attention [知見1] 双極空間モデルの1つであるクライン円盤モデルでは、Einstein midpoint という名前のものが存在することが知られている [知見2]
クライン円盤モデル( )とポアンカレボール( )は対応関係がある 対応関係は 7/17
知識グラフの活用(全体のロス) ポアンカレ埋め込みを学習するとき、知識グラフのデータを活用したい 英語: "The goal is to transfer the inductive
bias in KG to the item representation:" 乖離具合を評価するために、集約したものと学習している埋め込みベクトルとの距離 を使う 全体のロスは 8/17
(3) ハイパーパラメータに対処するためにバイレベル最適化を導入した 9/17
ロスのパラメータ化とバイレベル最適化 これまでもロスをくっつけるタイプの枠組みはあったが [課題1] ハイパラ の扱いが微妙だった (固定するとデータセットで異なる) [課題2] そもそもアイテム によって の強さが変わりそう
[課題3] 学習が進んでいくとそもそも の調整がいりそう 対策: ロスをパラメタライズする: . バイレベル最適化 (最適化が入れ子になったやつ。NASがとかもそう) に落とし込む 内側 (inner): を固定したときの全体ロス最良な を求める 外側 (outer): に対してランキングロス最良な を求める 10/17
バイレベル最適化を交互最適化と正則化を着けて解く 入れ子になっていても勾配は近似できる 近似関係を使って更新式を代用する (define a proxy function to link ...)
あとは と を順番に更新する Adamを使う 正則化も乗っている 結局ハイパラ は復活したけど、[課題 2]と[課題3] は対応できてそう 11/17
バイレベル最適化のブロック図 12/17
(4) 実験で性能を確認した 13/17
データセット・比較手法・結果 推薦でよく出てくるデータセット: Amazon-book、Last-FM、Yelp2018 いずれも80%を学習データ (内10%がvalidation)に、20%をテストデータに 評価指標: Recall@K と NDCG@K 比較手法
Factorization Machine とそのニューラルタイプ: MF/NMF 既存のKG活用手法: CKE (MF+TransR)/CFKG (TransE)/RippleNet/GC- MC (GCN)/KGAT 提案手法 Hyper-Know 14/17
Ablation BPR + E/H (Euclidean v.s. Hyperbolic) BPR + Att
+ E/H (Hyperbolic Attentionの比較) BPR + Avg + H (BPR + Att + H のAttをただの平均に置き換えた) Hyper-Know (全部) 15/17
計算時間・埋め込みの可視化 効率的 埋め込みを可視化した例 (3階層ぐらいを学習した) 16/17
まとめ (再掲) 推薦モデル + 知識グラフ 推薦モデル: 過去のログから (未知) アイテムの評価値を推定する 知識グラフ:
外部知識を表現する (e.g., 同じ監督の作品; directed_by) 著者らの4つの貢献 (3つの技術的な貢献+実験) (1) 双極空間を活用した推薦(RS)+知識グラフ(KG)を提案した (2) KGの情報を活用するためにアテンションのような構造を導入した (3) ハイパーパラメータに対処するためにバイレベル最適化を導入した (4) 実験で性能を確認した 17/17