CodeFest 2018. Константин Осипов (mail.ru) — Про будущее баз данных

16b6c87229eaf58768d25ed7b2bbbf52?s=47 CodeFest
April 05, 2018

CodeFest 2018. Константин Осипов (mail.ru) — Про будущее баз данных

Посмотрите выступление Константина: https://2018.codefest.ru/lecture/1283/

16b6c87229eaf58768d25ed7b2bbbf52?s=128

CodeFest

April 05, 2018
Tweet

Transcript

  1. The future of databases Konstantin Osipov, CTO, Tarantool Novosibirsk, Russia,

    01/04/2018
  2. whoami • MySQL core team member 2003-2010 • Tarantool core

    team member 2010-now • http://t.me/tarantoolru • http://tarantool.org
  3. The plan • Open source software and the cloud •

    The role of community • The impact of software defined infrastructure • Transition to the Edge computing • New trends in Hardware and Software
  4. OSS had a very rough decade • OSS exits: Cloudera,

    MongoDB • OSS revenue growth: 10x
  5. Open source software is under siege

  6. The cloud is the king

  7. Amazon is the new Microsoft

  8. The cloud is the king

  9. The developer is the king

  10. Developer demographics impacts the industry 2007 Clojure 2009 Go 2011

    Dart 2012 Julia, Elixir, Typescript 2014 Swift, Hack 2015 Rust 2016 Ring 2017 C++17
  11. Software defined infrastructure is a key enabler

  12. The new cloud: moving to the edge

  13. Edge software is about realtime decision making

  14. Data volume drives the transition

  15. Edge computing reshapes the cloud Today Tomorrow

  16. The technology shift • NewSQL replaces NoSQL • HTAP replaces

    OLAP • Multi-model databases replace Polyglot Persistence • Data grids became mature databases • There is market for specialized GPU and NVRAM products
  17. NewSQL • ACID transactions • Horizontal scaling • SQL support

  18. The end of OLAP HTAP databases provide: • online transaction

    processing • real-time SQL analytics
  19. The end of polyglot persistence • polyglot Persistence was a

    buzzword from 2012 • NoSQL databases have matured since
  20. Multi-model databases • Graphs, documents, relations in one product •

    ACID and horizontal scaling
  21. Grid computing • Started as caches and accelerators • leaders

    of distributed compute • SQL and ACID properties
  22. Conclusion

  23. GPU-based databases for analytics