Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
[파이콘 2019] 100억건의 카카오톡 데이터로 똑똑한 일상대화 인공지능 만들기
Search
Junseong
August 18, 2019
Research
7
3.9k
[파이콘 2019] 100억건의 카카오톡 데이터로 똑똑한 일상대화 인공지능 만들기
2019년 한국 파이콘에서 발표된 "100억건의 카카오톡 데이터로 똑똑한 일상대화 인공지능 만들기" 발표 자료입니다.
Junseong
August 18, 2019
Tweet
Share
More Decks by Junseong
See All by Junseong
House Share Platfrom with Senior Citizen 👵🏻🏠 - Junction Asia 2023
codertimo
0
78
Haru - Diary App with Stable Diffusion (JUNCTION 2022)
codertimo
0
1.8k
Imaginar.AI - JUNCTION ASIA 2022 Hackathon
codertimo
0
2.4k
Python Memory Management
codertimo
0
670
All you need is Google's AI Tech: I/O Extended Seoul 2019
codertimo
1
400
[네이버 테크톡] 사람들과 자연스러운 대화를 나누는 인공지능 '핑퐁' 만들기
codertimo
0
370
“머신러닝 엔지니어가 다녀온 F8” 김준성 - F8 2019 Meetup:Seoul
codertimo
0
200
Other Decks in Research
See All in Research
機械学習による言語パフォーマンスの評価
langstat
6
710
LLM時代にLabは何をすべきか聞いて回った1年間
hargon24
1
490
言語と数理の交差点:テキストの埋め込みと構造のモデル化 (IBIS 2024 チュートリアル)
yukiar
3
700
TransformerによるBEV Perception
hf149
1
410
テキストマイニングことはじめー基本的な考え方からメディアディスコース研究への応用まで
langstat
1
120
ダイナミックプライシング とその実例
skmr2348
3
380
秘伝:脆弱性診断をうまく活用してセキュリティを確保するには
okdt
PRO
3
740
Human-Informed Machine Learning Models and Interactions
hiromu1996
2
450
MIRU2024_招待講演_RALF_in_CVPR2024
udonda
1
330
Weekly AI Agents News! 10月号 論文のアーカイブ
masatoto
1
230
「並列化時代の乱数生成」
abap34
3
820
文献紹介:A Multidimensional Framework for Evaluating Lexical Semantic Change with Social Science Applications
a1da4
1
220
Featured
See All Featured
GraphQLの誤解/rethinking-graphql
sonatard
67
10k
Rails Girls Zürich Keynote
gr2m
94
13k
Making the Leap to Tech Lead
cromwellryan
133
8.9k
KATA
mclloyd
29
14k
Code Reviewing Like a Champion
maltzj
520
39k
Build your cross-platform service in a week with App Engine
jlugia
229
18k
ReactJS: Keep Simple. Everything can be a component!
pedronauck
665
120k
Learning to Love Humans: Emotional Interface Design
aarron
273
40k
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
506
140k
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
42
9.2k
The Myth of the Modular Monolith - Day 2 Keynote - Rails World 2024
eileencodes
16
2.1k
A Tale of Four Properties
chriscoyier
156
23k
Transcript
PyCon Korea 2019 100রѤ য়స ؘఠ۽ ڙڙೠ ੌ࢚ച ੋҕמ
ٜ݅ӝ झநఠە ೝಯ ӣળࢿ Pingpong AI Research / Junseong Kim
ӣળࢿ ScatterLab / Pingpong AI Research ݠन۞ ূפয - Open-Domain
Conversation AI (ੌ࢚ച ੋҕמ) - Natural Language Understanding (োয ೧) - Open-Domain Question Answering (և ߧਤ ) - ML Research To Production (ݠन۞ ݽ؛ োҳ ࠗఠ ࢲ࠺झച ө) Research Domain Experience - Crazy at NLP! 2.5֙р NLP/ML࠙ঠীࢲ নೠ ҃ਸ ऺҊ णפ! - Pingpong AI Research / ࢎۈۢ োझۣѱ ചೡ ࣻ ח ੋҕמ - Atlas Labs / ࢲ࠺झ ࢚ ୁࠈ, ӝ҅ߣ(NMT) - Naver Clova AI Research Intern / ۨझషی ড ୁࠈ, NLP Research @codertimo / +3K~ stars
[email protected]
ੌ࢚ച ੋҕמۆ ޖੌө য়ט যڃ ঠӝܳ ܖѱ ؼө?
ӝמച ੋҕמۆ ޖੌө? Functional Converstation AI য়ט զॿ ঌ۰! ॆ
ઁ ٜ݅যয? য়ט ഥ 3दীࢲ 4द۽ ߸҃೧ ࢎۈٜ ޙী ೞҊ, ਃೠ ࠗ࠙ਸ ܻೞח AI ѐੋ AI যदझఢ, Ҋёࣃఠ ୁࠈ ١ ࢎۈ ੌਸ न ೧ח ੋҕמ
ੌ࢚ച ੋҕמۆ ޖੌө? নೠ ઁী ೧ ਬ܂ѱ ঠӝೞҊ, ҙ҅ܳ ݛਸ
ࣻ ח ੋҕמ Open-Domain Conversation AI ҳঠ ߣ ߀؈!!! о੭!! ठೠప ରৈب ҡଳই ƕƕ (23, 도라에몽) ҳঠ ژ ࡎঠ?! ਵҳ ߄ࠁ
ӝמച ੋҕמ ӝࣿ դب ࢎਊо যڃ ޙ/ߊചܳ ೡ যוب
ஏ оמೣ ஏ оמೠ ߧਤীࢲ दաܻয়ܳ ٜ݅Ѣա, ݽ؛ਸ ٜ݅ ࣻ
ੌ࢚ച ੋҕמ ցޖ য۰ਕ..// ޖೠೠ /ߊച ߧਤ ੋҕמীѱ Inputਵ۽ ٜযৢ
ޙਸ ࢚ೡ ࣻ হ ࢎਊ х, ࢚క, दр ١ী ٮۄ ޖೠೠ ઁ, ޖೠೠ ޙݓ(Context) ҃ ࣻо ٜ݅য 무한한 질의 범위 (Infinite Query Space)
Ӓۢ ޙઁܳ ಽ ࣻ ח ਬੌೠ ߑߨ..? ߄۽ ٩۞ભ
ਬੌೠ ߑߨ ٩۞ ݽ؛ਸ ࢎۈۢ ೧ೞҊ ೡ ࣻ ب۾ णदఃח Ѫ шդইӝࠗఠ ࣻળ֫ ചܳ ೞӝ ਤ೧ ਃೠ ࣻ֙р ച҃ ਃ۽ೣ
ܻীѱח ؘఠо য! ݽٚ ؘఠח ࢎਊ زܳ ߉Ҋ ࢎਊীѱ
ઁҕ߉ওਵݴ ѐੋࠁ ध߹ ࠛоמೠ ؘఠ݅ োҳ ѐߊ ݾਵ۽݅ ࢎਊ غҊ णפ. ೠҴয 100রѤ స ؘఠ, ੌࠄয 2রѤ ۄੋ ؘఠ
ചܳ ೧೧ࠁ! Keypoint! ৬ ޙݓਸ ੜ ೧ೞח ݽ؛ Natural Language
Understanding : NLU ݽ؛
য ೧۱ ࢎۈ যڌѱ যী ೠ ೧۱ਸ ఃਕ աоחо? যܽইо
ࣻמ Ҵয ޙઁܳ ಽ ޅೞח ਬח ಹח పץ হযࢲ ӝب ೞ݅ যী ೠ Ӕࠄੋ ೧о ࠗೞӝ ٸޙ
য ೧۱ ࢎۈ যڌѱ যী ೠ ೧۱ਸ ఃਕ աоחо? ച
೧ ݽ؛ ण
য ೧۱ ࢎۈ যڌѱ যী ೠ ೧۱ਸ ఃਕ աоחо? ೡ
ࣻ ח ݽ؛ (ਊ ޙઁ) ܻ णػ ച ೧ ݽ؛
য ೧۱ ࢎۈ যڌѱ যী ೠ ೧۱ਸ ఃਕ աоחо? ೡ
ࣻ ח ݽ؛ (ਊ ޙઁ) ܻ णػ ച ೧ ݽ؛
Әө NLU ҙ۲ োҳ Word2Vec, ELMO ١١ from gensim.models import
Word2Vec model = Word2Vec(...) model.most_similar(positive=[“৴", “ৈࢿ"], negative=[“թࢿ”]) # >> (“ৈ৴”, 0.0332387343) ߸ ױযٜр ਤܳ ഝਊೞৈ Skip-Gram ߑधਵ۽ ण Gensim ۄ࠳۞ܻܳ ਊ೧ࢲ ݆ ѐߊٜীѱ ࢎی߉ Word2Vec (ױয ױਤ Representation) Mikolov, Tomas, et al. "Distributed representations of words and phrases and their compositionality." Advances in neural information processing systems. 2013.
Әө NLU োҳ Word2Vec, ELMO ١١ from gensim.models import Word2Vec
model = Word2Vec(...) model.most_similar(positive=[“৴", “ৈࢿ"], negative=[“թࢿ”]) # >> (“ৈ৴”, 0.0332387343) class ELMo(nn.Module): def __init__(self): super().__init__() self.word_embed = nn.Embedding(VOCAB_SIZE, 1024) self.encoder = nn.LSTM(1024, bidirectional=True) self.pretrain_proj = nn.Linear(1024, VOCAB_SIZE) def forward(self, input_seq: torch.Tensor) -> torch.Tensor: embed = self.word_embed.forward(input_seq) return self.encoder.forward(embed) def pretrain(self, input_seq: torch.Tensor) -> torch.Tensor: encoded = self.forward(input_seq) return self.pretrain_proj.forward(encoded) ߸ ױযٜр ਤܳ ഝਊೞৈ Skip-Gram ߑधਵ۽ ण Gensim ۄ࠳۞ܻܳ ਊ೧ࢲ ݆ ѐߊٜীѱ ࢎی߉ BI-LSTM ݽ؛ҳઑܳ ਊ೧ ױযܳ ஏೞب۾ ण Word2Vec (ױয ױਤ Representation) ELMo (ޙ ױਤ Representation) Mikolov, Tomas, et al. "Distributed representations of words and phrases and their compositionality." Advances in neural information processing systems. 2013. Deep contextualized word representations Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Kenton Lee, Luke Zettlemoyer. NAACL 2018.
ೞ݅ ցޖա ࠗೠ NLU ࢿמ ӝઓ NLU ޙઁ ױ п
ޙী ೧ Өѱ ೧ೞ ޅೞҊ
ӝઓ NLU ޙઁ ױ ೧೧ঠ ೡ ޙ ӡо ӡࣻ۾ ೧بо
әѺೞѱ ڄয п ޙী ೧ Өѱ ೧ೞ ޅೞҊ ೞ݅ ցޖա ࠗೠ NLU ࢿמ
ӝઓ NLU ޙઁ ױ ೧೧ঠ ೡ ޙ ӡо ӡࣻ۾ ೧بо
әѺೞѱ ڄয ച ޙݓ(Dialog-Context) ഃ ೧ೞҊ ঋ ೞ݅ ցޖա ࠗೠ NLU ࢿמ п ޙী ೧ Өѱ ೧ೞ ޅೞҊ
BERT Transformer 2018֙ 10ਘ
BERT Bidirectional Encoder Representation from Transformer 2018֙ 10ਘ
BERT BERT 2018֙ 10ਘ
BERT BERT 2018֙ 10ਘ
ݽٚ ޙઁܳ ೠߣী ೧Ѿ೧ࠁ NLU ୭ъ : BERT ࢎۈ ೧۱ਸ
ֈযࢶ NLU ݽ؛ ݃झఠ *SQuAD ޙઁীࢲ ࢎۈࠁ ֫ f1 scoreܳ ׳ࢿ೮ 11ѐ NLP పझীࢲ ݽف SOTA(State-Of-The-Art)ܳ ନযߡܿ
BERT ݽ؛ ण द ୭Ҋ NLU ݽ؛ਸ ٜ݅য ࠁ 1.
Self-Attentionਸ ৈ۞ க ऺѱ غݶ ؊ ࠂೠ ࢚ҙҙ҅ Ө ೧о оמೣ 2. ױযٜ ҙ҅ܳ ઙਵ۽ ৈ۞ߣ ࠁӝ ٸޙী ਊա ী х x 3. ӟ ޙীب ਬো೧ࢲ ച ޙݓ ࠁ द ബҗਵ۽ ೧ೡ ࣻ 4. Masked LM ۄח рױೠ ߑध য ೧ / ೞ݅ Ө ೧ 5. Next Sentence Prediction ݽ؛ਸ ా೧ࢲ ޙݓী ೠ ೧ ୶о ച NLU ݽ؛۽ BERTܳ ࢎਊೞѱ غݶ ח
BERT ݽ؛ ण द ୭Ҋ NLU ݽ؛ਸ ٜ݅য ࠁ ۧѱ
ੜೞח ݽ؛ חؘ पਸ উ೧ࠅ ࣻ হ! ചܳ ਤೠ BERTפ Dialog-BERT ۽ ܴਸ ࢎਊ೧ ࠁ
1. ࠼ ݏ୶ӝ ޙઁ: Masked Language Modeling Dialog-BERT ण ߑߨ
ߣী оր? эоप? ে ցب оջ? Ӓې э о ߣী ߊ ߀חѢ ݆؍ؘ դ ળࢿש ߊ ٜਸԄؘ ƀƀ াƀƀ աب ߅ ӝ ױযীࢲ 15%ܳ ےؒೞѱ ઁೞҊ, ೧ ܻী ઁػ ױযо ޥ ݏ୶ӝ ച ޙݓҗ ೧ ച ߸ ױযٜр ҙ҅ܳ ਬ୶೧ࢲ ݏঠೣ
ߣী оր? эоप? ে ցب оջ? Ӓې э о
ߣী ߊ ߀חѢ ݆؍ؘ դ ળࢿש ߊ ٜਸԄؘ ƀƀ াƀƀ աب ߅ ӝ ױযীࢲ 15%ܳ ےؒೞѱ ઁೞҊ, ೧ ܻী ઁػ ױযо ޥ ݏ୶ӝ ച ޙݓҗ ೧ ച ߸ ױযٜр ҙ҅ܳ ਬ୶೧ࢲ ݏঠೣ 1. ࠼ ݏ୶ӝ ޙઁ: Masked Language Modeling Dialog-BERT ण ߑߨ
ߣী оր? эоप? ে ցب оջ? Ӓې э о
ߣী ߊ ߀חѢ ݆؍ؘ դ ળࢿש ߊ ٜਸԄؘ ƀƀ াƀƀ աب ߅ ӝ ױযীࢲ 15%ܳ ےؒೞѱ ઁೞҊ, ೧ ܻী ઁػ ױযо ޥ ݏ୶ӝ ച ޙݓҗ ೧ ച ߸ ױযٜр ҙ҅ܳ ਬ୶೧ࢲ ݏঠೣ 1. ࠼ ݏ୶ӝ ޙઁ: Masked Language Modeling Dialog-BERT ण ߑߨ
2. োࣘ ച ৈࠗ Classification: Next Sentence Prediction ߣী ৬झ
࢜۽ աৡ नҋ ޭ࠺ ࠌয? ো ࠌ ৬ ߅؊ۄ ӒפӬ ƕƕƕ ߣ ֢ې ୭Ҋঠ അ ޙݓীࢲ য ޙ য ࣻ ח णೞח ߑध ܳ ా೧ࢲ োࣘػ ചীࢲ োझ۞ ޙݓ ޖੋ োझۣѱ ೧ೣ Input Context Dialog-BERT ण ߑߨ
2. োࣘ ച ৈࠗ Classification: Next Sentence Prediction ߣী ৬झ
࢜۽ աৡ नҋ ޭ࠺ ࠌয? ো ࠌ ৬ ߅؊ۄ ӒפӬ ƕƕƕ ߣ ֢ې ୭Ҋঠ ݡѢ যݠפԋ ݈ॹ٘۷য? അ ޙݓীࢲ য ޙ য ࣻ ח णೞח ߑध ܳ ా೧ࢲ োࣘػ ചীࢲ োझ۞ ޙݓ ޖੋ োझۣѱ ೧ೣ Input Context ޙݓী ݏ ঋח - Target 0 Dialog-BERT ण ߑߨ
2. োࣘ ച ৈࠗ Classification: Next Sentence Prediction ߣী ৬झ
࢜۽ աৡ नҋ ޭ࠺ ࠌয? ো ࠌ ৬ ߅؊ۄ ӒפӬ ƕƕƕ ߣ ֢ې ୭Ҋঠ Ӓېࢲ ա ߣী চߧ ࢎ۰Ҋ!! അ ޙݓীࢲ য ޙ য ࣻ ח णೞח ߑध ܳ ా೧ࢲ োࣘػ ചীࢲ োझ۞ ޙݓ ޖੋ োझۣѱ ೧ೣ Input Context ޙݓী ݏח - Target 1 Dialog-BERT ण ߑߨ
ചदझమী ݏח BERT ҳઑ ߸҃ Dialog-BERT ݽ؛ ҳઑ ೞ݅ ӝઓ
ݽ؛ ҳઑח ചदझమী ୭ച غ ঋ ঠ ਫ਼݅ Ә ੌլ֎ ƀƀ ޥؘ Ӓې цӝ?? ীо ަ فҊ ৳য ƀƀ User A TURN 1 User A TURN 3 User B TURN 2 Original BERT ҳઑ ӝઓ ݽ؛ীח п ఢਸ ҳ࠙ೡ ࣻ ח ࠁо হযࢲ ఢਸ ҳ࠙ೞӝ য۰ਛ Dialog-BERTীࢲח Turn Embeddingਸ ୶о೧ п ఢ߹ ࠁܳ ֍
ݽ؛ ण BERTܳ ച ؘఠ۽ ण೧ ࠁ! ҳӖ google-research/bert ۨನܳ
ਊ೧ࢲ BERT NLU ݽ؛ ण with Tensorflow ೂࠗೠ ചܳ ೞח ࢎਊܳ Ҏۄ 10রѤ ച ؘఠ ࢎਊ Google TPU-v3 ܳ ࢎਊ೧ࢲ ড 18ੌр ण
Pre-training Result BERTܳ ച ؘఠ۽ ण೧ ࠁ! Next Sentence Prediction
: 88.4% ACC / Masked Language Modeling : 53.6% ACC
Downstream Task Fine-Tuning BERTܳ ച ؘఠ۽ ण೧ ࠁ! ӝઓী ELMo
ա NLU ݽ؛ হ ण दௌਸ ٸ ࠁ ਘ١ ֫ ࢿמ ೱ࢚ਸ ࠁৈ ೧۱ ݒ ࣻೠ Dialog-BERT ݽ؛ਸ ٜ݅ ࣻ 80% 85% 90% 95% 100% زੌ ޙ ҳ࠙ ߸ ݒட ݽ؛ ب ࠙ܨ Base-Line BERT
ਸ ೧ࠁ! ڪযդ ೧۱ਸ ޖӝ۽ ы! ઁ ݈ਸ ೡ ࣻ
ب۾ оܰࠁ
যڌѱ ޖೠೠ ҃ী ࣻী ೡ ࣻ ਸө? ޖೠೠ ন ߊചী
غח ߸ਸ ٜ݅যঠ ೣ! BERT ޖೠೠ ҃ ࣻ input য ೧
যڌѱ ޖೠೠ ҃ী ࣻী ೡ ࣻ ਸө? ޖೠೠ ন ߊചী
غח ߸ਸ ٜ݅যঠ ೣ! BERT ޖೠೠ ҃ ࣻ input য ೧ ޖೠೠ ߸ ҃ ࣻ
যڌѱ ޖೠೠ ҃ী ࣻী ೡ ࣻ ਸө? ޖೠೠ ন ߊചী
غח ߸ਸ ٜ݅যঠ ೣ! BERT ޖೠೠ ҃ ࣻ input য ೧ ਬೠѐ ߸ ߑߨ
যڌѱ ޖೠೠ ҃ী ࣻী ೡ ࣻ ਸө? ޖೠೠ ন ߊചী
غח ߸ਸ ٜ݅যঠ ೣ! ޖೠѐ ޙٜী ೧ ਬೠѐ ߸ ݃ա ݆ࣻ ޙਸ ݃ա ೠ ߸ਵ۽ ழߡೡ ࣻ ח ৈࠗ Test Coverage -> ച Coverage
ࢎۈٜ ۽ ࢎਊೞח ߊചо ަө? ޖೠೠ ন ߊചী غח ߸ਸ
ٜ݅যঠ ೣ! पઁ ച ؘఠܳ ٍઉࢲ ച ழߡܻܳ ӓചೡ ࣻ ח ߸ٜਸ ইࠁ
ച ݫदܳ ࠼بࣻ ӝળਵ۽ ࢚ਤ ۘఊ ‘ܻঘ࣌’ী оө ݈ٜ ݆ও
TOP 10000ѐ ޙ 8000݅ѐ ݫࣁ 21.87%(1700݅ߣ)ܳ ର೮ ইפীਃ ੜਃ ݆ݡয ਃ ੜ೮যਃ উ೧ਃ ӈৈਕ ઔ۰ ߏݡয ࢎی೧ਃ ࠗ۞ਕ Ѣ݈ ݍѱݡয ߅ ҡଳই য٥ؘ աبաب ইب नӝ೧ ઁ ־ҳی ঌѷযਃ पઁ ച ࠙ࢳ ࢎۈٜ ۽ যڃ ݈ٜਸ ݆ ೡө?
ܻঘ࣌ ܻח ݆ ചܳ ܻঘ࣌ਸ ਊ೧ࢲ ܻೣ : ܻঘ࣌݅ ੜ೧ب
{թ|ৈ}ҳীѱ ࢄ߉ח ചо оמೣ ചীࢲ ܻঘ࣌ নೠ ࢚ടীࢲ ҭ ਬਊೠ ച ߑߨ ܻח ܻঘ࣌ਸ যڌѱ ࢎਊೞחо?
݅ড AIо যڃ ޙীٚ ܻঘ࣌ਸ ೡ ࣻ ݶ..? ܻঘ࣌ਸ ా೧
߸ ߧਤܳ ગݶࢲب query coverageܳ ӓച ೡ ࣻ ! ӝઓ दझమٜী ࠺೧ ষաѱ Query Coverageܳ טܾ ࣻ ! ࢎਊ ޖೠೠ ޙী য ށۄೞ؍ ࠈ ઁ যו ب ݏ߉ই ச ࣻ ח מ۱ਸ ષ ܻঘ࣌ ݽ؛ਸ ٜ݅ѱ ػݶ!!
যڌѱ ޖೠೠ ҃ী ࣻী ೡ ࣻ ਸө? ޖೠೠ ন ߊചী
غח ߸ਸ ٜ݅যঠ ೣ! BERT ޖೠೠ ҃ ࣻ input য ೧ ਬೠѐ ߸ ߑߨ
যڌѱ ޖೠೠ ҃ী ࣻী ೡ ࣻ ਸө? ޖೠೠ ন ߊചী
غח ߸ਸ ٜ݅যঠ ೣ! BERT ޖೠೠ ҃ ࣻ input য ೧ ਬೠѐ ߸ ߑߨ Reaction Model ܻঘ࣌ ݽ؛
ܻঘ࣌ ݽ؛ਸ ٜ݅যࠁ! ࢚ਤ ߸ਸ Reaction Class۽ ٜ݅Ҋ, ࠙ܨ ޙઁ۽
ಽযࠁ! ড 5ఢ ب ޙݓਸ inputਵ۽ Ҋ, যڃ ܻঘ࣌ਸ ࢎਊೡ ஏೞب۾ णਸ दெࠁ!
ܻঘ࣌ ݽ؛ਸ ٜ݅যࠁ! যઁ ٜ݅؍Ѥ ٜ݅য? | ইਃ |
ইب | ֎.. | ઁ ߊܐ Ӓ݅ ٜ݅Ҋ оࢲ ঌѷযਃ ि ӒѢ যڌѱ ೠҊ ೮ભ? | ղо ઙী о ॄְয! | ࠠ Ѣ ॳݶ غભ? | ӒѢ ॳݶ ؼԁঠ ঌѷযਃ য়ט ইஜࠗఠ न হ֎ | ই | ই ߓҊ աب ਃ્ ൨ٜয ࠁੋ | ҅ࣘ ঠӔ೧оҳ | оՔঀ рী ખ Ҋ रয աب ઁ১? | 12दତ? | ೳ ן֎ ߓҊѷ | ƕƕ | ঠध दெݡਸө? જই ঠ ա য়טࠗఠ য | աبաب | ցب э زтې? જই ࢚ਤ ߸ਸ Reaction Class۽ ٜ݅Ҋ, ࠙ܨ ޙઁ۽ ಽযࠁ! ড 5ఢ ب ޙݓਸ inputਵ۽ Ҋ, যڃ ܻঘ࣌ਸ ࢎਊೡ ஏೞب۾ णਸ दெࠁ! … ড 1000݅Ѥ+ ܻঘ࣌ ण ؘఠࣇ / ষաѱ নೠ ࢚ടҗ ݈ై
ݣ౭ఢ ܻঘ࣌ ݽ؛ Dialog-BERT(NLU)ܳ ਊೠ ୭ࣗೠ ݽ؛ ҳઑ ߸҃ যઁ
ٜ݅؍Ѥ ٜ݅য? | ইਃ | ইب | ֎.. | ઁ ߊܐ Ӓ݅ ٜ݅Ҋ оࢲ ঌѷযਃ (0.72) ֎֎! (0.2) फযਃ (0.12) ..
Pytorchܳ ਊೠ Fine-Tuning BERTܳ ച ؘఠ۽ ण೧ ࠁ! ҳӖ google-research/bert
ۨನܳ ਊ೧ࢲ BERT NLU ݽ؛ ण with Tensorflow ೂࠗೠ ചܳ ೞח ࢎਊܳ Ҏۄ 10রѤ ച ؘఠ ࢎਊ Google TPU-v3 ܳ ࢎਊ೧ࢲ ড 18ੌр ण HuggingFace Pytorch-Transformer ۄ࠳۞ܻ ਊ णػ NLU ݽ؛ਸ ഝਊೠ ѐߊ / ण with pytorch ܻঘ࣌ ݽ؛ fine-tuning ઑण җ V100 GPUܳ ਊ೧ࢲ ೞܖب ण
प۱ ی ೠߣ ೧ࠅө?! ܻঘ࣌ ݽ؛ Ѿҗ
ೠ ߸ ࢶఖਸ ా೧ࢲ ࢎਊ ݈ী ҕхೞҊ ചܳ ਬبೣ নೠ
ࢎਊ ߊചী ೡ ࣻ https://demo.pingpong.us/multi-turn-reaction/ নೠ ࢚ടী ೠ ӝઓ ࠈۄݶ ੌੌ ifޙਵ۽ ॄঠ ೮؍ Ѫٜਸ ঌইࢲ ೣ
ೠ ߸ ࢶఖਸ ా೧ࢲ ࢎਊ ݈ী ҕхೞҊ ചܳ ਬبೣ নೠ
ࢎਊ ߊചী ೡ ࣻ https://demo.pingpong.us/multi-turn-reaction/ ࢎഥੋ ѐ֛ী ೠ ೧ ࢎۈٜ ച҃ਸ Ӓ۽ ޛ۰߉ও
ೠ ߸ ࢶఖਸ ా೧ࢲ ࢎਊ ݈ী ҕхೞҊ ചܳ ਬبೣ নೠ
ࢎਊ ߊചী ೡ ࣻ https://demo.pingpong.us/multi-turn-reaction/ ӟ ޙب ੜ ೧ೞҊ, ҳੋ ߸ ࢚ߑ ޙਸ ݺഛೞѱ ঈೞҊ ҳੋ ޙա ߸ਸ ೡ ࣻ
݄݃ ചܳ “Ӓۡө?”۽ ҊೞҊ, ޙݓ߸ച ޙݓਸ ೧ೞח ߸ https://demo.pingpong.us/multi-turn-reaction/ ޙݓਸ
߈ೞݶࢲ ߸ оמೞ
݄݃ ചܳ “Ӓۡө?”۽ ҊೞҊ, ޙݓ߸ച ޙݓਸ ೧ೞח ߸ https://demo.pingpong.us/multi-turn-reaction/ ޙݓਸ
߈ೞݶࢲ ߸ оמೞ য়! ޙݓ ׳ۄݶ ߸ ׳ۄઉ!
݄݃ ചܳ “Ӓۡө?”۽ ҊೞҊ, ޙݓ߸ച ޙݓਸ ೧ೞח ߸ https://demo.pingpong.us/multi-turn-reaction/ ޙݓਸ
߈ೞݶࢲ ߸ оמೞ য়! ޙݓ ׳ۄݶ ߸ ׳ۄઉ! ਤ۽೧ ࢲ Ҋ݃ਕ ೝಯ!
ޙݓਸ Өѱ ೧ೞҊ ࢎۈۢ ߸ೞח ݽ؛ ৈ۞࠙ب ೠߣ ೧ࠁࣁਃ! https://demo.pingpong.us/multi-turn-reaction/
https://demo.pingpong.us/multi-turn-reaction/
ܻঘ࣌ ݽ؛ਸ ನೣೠ নೠ ചܳ ೡ ࣻ ח ੋҕמ m.me/ai.pingpong
ޅೠ ঠӝ SpeakerDeck : https://bit.ly/2yvWLYR Naver TechTalk: https://youtu.be/T4wjg9_E3K4 Әө ݅ٚ
ݽ؛ٜਸ ࣁೞѱ ٜযࠁप ࣻ णפ! ֎ߡ పస “ࢎۈٜҗ োझ۞ ചܳ ա־ח ੌ࢚ച ੋҕמ ٜ݅ӝ”
খਵ۽ ب೧ աт җઁٜ 1. ߸ ࢤࢿ ӝࣿ (Generation) :
GPT-2۽ ݅ٚ ࣗࢸॳח ੋҕמ ۢ ਬ܂ѱ ചܳ ࢤࢿ(Generation) ೡ ࣻ ח ݽ؛ਸ ٜ݅Ҋ 2. ѐੋച ߸ (User-Background Aware) : ࢎਊ അ х, ߓ҃١ী ٮۄ ߸ਸ ઑೞח ݽ؛ 3. ޙ ߸ച ݽ؛ (Text Style Transfer) : ౠ ޙ(ಕܰࣗա)ܳ ߈ೠ ߸, ࢎਊա நܼఠ ݃ ݈ైо ؘܲ ۠ ౠੋ ݈ైܳ ߈ೠ ߸ਸ ࢤࢿೞח ݽ؛ 4. ؊ ӟ ޙݓ (Longer Context) : Әࠁ ഻न ؊ ӟ ޙݓਸ ߈ೞҊ, ച ઁо ߸҃غਸ ٸ ࡅܰѱ ந೧ࢲ ӝઓ ޙݓਸ ୡӝച ೡ ࣻ ח ݽ؛ 5. ؊ ڙڙೠ, ؊ ܴࣗثח (Humanize) : Ҿӓਵ۽ ؊ ࢎۈэ ੋҕמਸ ٜ݅ӝ ਤೠ ݽٚ োҳٜ
ܻی э ޙઁܳ ಽযࠁ ঋਸېਃ? Ә߄۽ GOGO!! https://scatterlab.co.kr/recruiting Welcome
to ScatterLab, Pingpong AI Research ܻ݅ఀ ੜೞҊ / ੜ ֥Ҋ / ѱ ੌೞח Ҕ হਸԁীਃ ৈ۞࠙ ࢚࢚ೞח Ѫ ࢚ਵ۽ જ Ҋ, ח Ҕۉפ!! ܻ ࠗझب ೞҊ যਃ!! ਊ࢚ೞҊ ҽૉ ߉ਵ۞ য়ࣁਊ!!
хࢎפ ߊա ೝಯ ҙ۲ ޙ ਵदݶ ઁٚ ജ ੑפ