Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Caffeでお手軽本格ディープラーニングiOSアプリ
Search
Sponsored
·
Your Podcast. Everywhere. Effortlessly.
Share. Educate. Inspire. Entertain. You do you. We'll handle the rest.
→
Takuya Matsuyama
October 13, 2015
Technology
1
1.6k
Caffeでお手軽本格ディープラーニングiOSアプリ
@potatotips #22
#DeepLearning #MachineLearning
Takuya Matsuyama
October 13, 2015
Tweet
Share
More Decks by Takuya Matsuyama
See All by Takuya Matsuyama
ネイティブモジュールの作り方 @ React Native Meetup #9 in Japan
craftzdog
6
1.3k
How to Create Native Modules @ React Native Japan Meetup #9
craftzdog
1
900
Introducing Inkdrop for Mobile Built with React Native
craftzdog
1
2.2k
The fun Deep Learning
craftzdog
0
2.9k
Other Decks in Technology
See All in Technology
Azure Durable Functions で作った NL2SQL Agent の精度向上に取り組んだ話/jat08
thara0402
0
130
ZOZOにおけるAI活用の現在 ~開発組織全体での取り組みと試行錯誤~
zozotech
PRO
4
4.7k
Amazon Bedrock AgentCore 認証・認可入門
hironobuiga
2
500
SREじゃなかった僕らがenablingを通じて「SRE実践者」になるまでのリアル / SRE Kaigi 2026
aeonpeople
6
2k
顧客の言葉を、そのまま信じない勇気
yamatai1212
1
320
予期せぬコストの急増を障害のように扱う――「コスト版ポストモーテム」の導入とその後の改善
muziyoshiz
1
1.4k
Context Engineeringの取り組み
nutslove
0
260
Frontier Agents (Kiro autonomous agent / AWS Security Agent / AWS DevOps Agent) の紹介
msysh
3
140
Webhook best practices for rock solid and resilient deployments
glaforge
1
250
Claude_CodeでSEOを最適化する_AI_Ops_Community_Vol.2__マーケティングx_AIはここまで進化した.pdf
riku_423
0
260
20260129_CB_Kansai
takuyay0ne
1
270
GCASアップデート(202510-202601)
techniczna
0
250
Featured
See All Featured
The untapped power of vector embeddings
frankvandijk
1
1.6k
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
52
5.8k
The Curse of the Amulet
leimatthew05
1
8.2k
Designing Dashboards & Data Visualisations in Web Apps
destraynor
231
54k
Digital Ethics as a Driver of Design Innovation
axbom
PRO
1
170
Data-driven link building: lessons from a $708K investment (BrightonSEO talk)
szymonslowik
1
910
Ethics towards AI in product and experience design
skipperchong
2
190
Product Roadmaps are Hard
iamctodd
PRO
55
12k
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
38
2.7k
Building an army of robots
kneath
306
46k
Designing Experiences People Love
moore
144
24k
Exploring the relationship between traditional SERPs and Gen AI search
raygrieselhuber
PRO
2
3.6k
Transcript
$B⒎FͰ͓खܰຊ֨ σΟʔϓϥʔχϯά J04ΞϓϦ 5",6:" !OPSBEBJLP QPUBUPUJQT
দࢁ w !OPSBEBJLP w ϑϦʔϥϯε ݩ:BIPP w J04ΞϓϦ ΣϒΞϓϦͳͲΛ੍࡞
w ػցֶशʹڵຯ͋Γ w ֆඳ͖·͢ 2
ΊΜ͖͖ ໙ར͖ 3
4 ໙ར͖ ࣸਅʹج͍ͮͯϥʔϝϯΛਪન͢ΔΞϓϦ ೖྗ
5 σΟʔϓϥʔχϯά ͷٕज़Λ༻ ʴ ʹ
ը૾ೝࣝʹڧ͍ ػցֶशΞϧΰϦζϜ 6 σΟʔϓϥʔχϯάͱ
w ͷਆܦߏΛ฿ͨ͠χϡʔϥϧωοτϫʔΫͷҰछ w େྔͷσʔλ͔ΒମͷಛΛࣗಈతʹֶश ‣ ͜Ε·Ͱಛͷநग़ํ๏ਓ͕͕ؒΜͬͯ༻ҙ͍ͯͨ͠ 7
࡞Ζ͏ σΟʔϓϥʔχϯάΞϓϦ ୭Ͱ؆୯ʹ࡞ΕΔํ๏Λ͝հ͠·͢ 8
$B⒎F σΟʔϓϥʔχϯά༻ ϑϨʔϜϫʔΫ w IUUQDB⒎FCFSLFMFZWJTJPOPSH w (16ԋࢉ $6%" ͰߴʹֶशͰ͖Δ w
͙͢ʹࢼͤΔֶशࡁΈϞσϧ͋Δ w .BD049ରԠ 9
Caffe for J04্Ͱಈ͘$B⒎F w IUUQTHJUIVCDPNBMFQIDB⒎F w $B⒎FͷGPSL w J04্Ͱࣝผॲཧ͕࣮༻ʹ͑ΔͰಈ͔ͤΔ ‣
J1IPOFTͰʙඵ w αʔό͍ΒͣͰ͑Δ w ͨͩ͠9$PEF·ͩඇରԠ 10
$B⒎FGPSJ04 αϯϓϧ࡞Γ·ͨ͠ w IUUQTHJUIVCDPNOPSBEBJLP DB⒎FJPTTBNQMF w ୯७ͳମೝࣝ w #-7$$B⒎F/FU.PEFMΛ༻ 11
demo
༻͢Δσʔλ w MBCFMTUYUࣝผ݁ՌΛ໊લʹม͢ΔͨΊͷҰཡ w EFQMPZQSPUPUYUωοτϫʔΫఆٛ w NFBOCJOBSZQSPUPฏۉը૾ w CWMD@SFGFSFODF@DB⒎FOFUDB⒎FNPEFMֶशࡁΈσʔλ 13
ॲཧͷྲྀΕ ࣝผରͷը૾ͷಡΈࠐΈ w ૾ͷը૾ $MBTTJpFSΫϥεͷॳظԽ w ͭͷϞσϧσʔλͷϑΝΠϧύεΛࢦఆ $MBTTJpFSͷ࣮ߦ w ը૾Λࢦఆͯ݁͠ՌΛऔಘ
ࣝผ݁Ռͷग़ྗ 14
UIImage* image = [UIImage imageNamed:@"sample.jpg"]; cv::Mat src_img, img; UIImageToMat(image, src_img);
cv::cvtColor(src_img, img, CV_RGBA2BGRA); ը૾ͷಡΈࠐΈ w 6**NBHFΛಡΈࠐΈ w DW.BUܗࣜʹม w ΧϥʔྻΛ3(#"͔Β#(3"ʹม
// ϑΝΠϧύεΛstringܕʹม string model_file_str = std::string([model_file UTF8String]); string label_file_str =
std::string([label_file UTF8String]); string trained_file_str = std::string([trained_file UTF8String]); string mean_file_str = std::string([mean_file UTF8String]); Classifier classifier = Classifier(model_file_str, trained_file_str, mean_file_str, label_file_str); $MBTTJpFSͷॳظԽ w ϞσϧఆٛɺϥϕϧɺֶशࡁΈϞσϧɺฏۉը૾ͷύεΛऔಘ w ֤ϑΝΠϧύεΛTUETUSJOHʹม w $MBTTJpFSͷΠϯελϯεΛ࡞
// ࣝผͷ࣮ߦ std::vector<Prediction> result = classifier.Classify(img); $MBTTJpFSͷ࣮ߦ w ը૾Λࢦఆ͢Δ͚ͩʂ
for (std::vector<Prediction>::iterator it = result.begin(); it != result.end(); ++it) {
NSString* label = [NSString stringWithUTF8String:it->first.c_str()]; NSNumber* probability = [NSNumber numberWithFloat:it->second]; NSLog(@"label: %@, prob: %@", label, probability); } ࣝผ݁Ռͷग़ྗ w TUEWFDUPSܗࣜͰෳͷࣝผީิ͕ಘΒΕΔ w JUFSBUPSͰճ֤ͯ͠ީิΛऔಘ w JUpSTUϥϕϧɺJUTFDPOE֬
·ͱΊ w $B⒎FΛ͑ΦϦδφϧͷֶशϞσϧ͕࡞ΕΔ w $B⒎FGPSJ04ͳΒαʔό͍ΒͣͰࣝผॲཧ͕ग़དྷΔ w αϯϓϧϓϩδΣΫτͷ͝հ w ΦϦδφϧͷֶशϞσϧͰΞϓϦΛ࡞Ζ͏ʂ 19
͝ਗ਼ௌ͋Γ͕ͱ͏͍͟͝·ͨ͠ 20