Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
マッチングサービスの画像審査における機械学習の応用 / Application of mach...
Search
Sponsored
·
Your Podcast. Everywhere. Effortlessly.
Share. Educate. Inspire. Entertain. You do you. We'll handle the rest.
→
CyberAgent
PRO
November 07, 2019
Technology
0
1.6k
マッチングサービスの画像審査における機械学習の応用 / Application of machine learning in image examination
マッチングサービスの画像審査における機械学習の応用
秋葉原ラボ 上岡将也
CyberAgent
PRO
November 07, 2019
Tweet
Share
More Decks by CyberAgent
See All by CyberAgent
生成AIを活用したデータ分析でいまできること
cyberagentdevelopers
PRO
1
150
IBC 2025 動画技術関連レポート / IBC 2025 Report
cyberagentdevelopers
PRO
2
430
2025年度 生成AI 実践編
cyberagentdevelopers
PRO
7
660
LLMを用いたメタデータベースレコメンド検証
cyberagentdevelopers
PRO
6
2.2k
CodeAgentとMCPで実現するデータ分析エージェント
cyberagentdevelopers
PRO
1
520
SQL Agentによるタップルのデータ利活用促進
cyberagentdevelopers
PRO
4
1.4k
NAB Show 2025 動画技術関連レポート / NAB Show 2025 Report
cyberagentdevelopers
PRO
1
580
【2025年度新卒技術研修】100分で学ぶ サイバーエージェントのデータベース 活用事例とMySQLパフォーマンス調査
cyberagentdevelopers
PRO
8
14k
【CA.ai #1】未来を切り拓くAIエージェントの可能性
cyberagentdevelopers
PRO
4
420
Other Decks in Technology
See All in Technology
Contract One Engineering Unit 紹介資料
sansan33
PRO
0
13k
Bedrock PolicyでAmazon Bedrock Guardrails利用を強制してみた
yuu551
0
240
10Xにおける品質保証活動の全体像と改善 #no_more_wait_for_test
nihonbuson
PRO
2
300
ブロックテーマでサイトをリニューアルした話 / 2026-01-31 Kansai WordPress Meetup
torounit
0
470
Introduction to Sansan, inc / Sansan Global Development Center, Inc.
sansan33
PRO
0
3k
20260208_第66回 コンピュータビジョン勉強会
keiichiito1978
0
150
2026年、サーバーレスの現在地 -「制約と戦う技術」から「当たり前の実行基盤」へ- /serverless2026
slsops
2
250
生成AIを活用した音声文字起こしシステムの2つの構築パターンについて
miu_crescent
PRO
2
210
セキュリティについて学ぶ会 / 2026 01 25 Takamatsu WordPress Meetup
rocketmartue
1
300
Bill One 開発エンジニア 紹介資料
sansan33
PRO
5
17k
What happened to RubyGems and what can we learn?
mikemcquaid
0
300
Frontier Agents (Kiro autonomous agent / AWS Security Agent / AWS DevOps Agent) の紹介
msysh
3
180
Featured
See All Featured
Leading Effective Engineering Teams in the AI Era
addyosmani
9
1.6k
The Curious Case for Waylosing
cassininazir
0
240
First, design no harm
axbom
PRO
2
1.1k
sira's awesome portfolio website redesign presentation
elsirapls
0
150
Paper Plane (Part 1)
katiecoart
PRO
0
4.3k
KATA
mclloyd
PRO
34
15k
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
34
2.6k
Measuring & Analyzing Core Web Vitals
bluesmoon
9
750
Producing Creativity
orderedlist
PRO
348
40k
Ten Tips & Tricks for a 🌱 transition
stuffmc
0
69
The Psychology of Web Performance [Beyond Tellerrand 2023]
tammyeverts
49
3.3k
Navigating Team Friction
lara
192
16k
Transcript
マッチングサービスの画像審査 における機械学習の応⽤ 株式会社サイバーエージェント 秋葉原ラボ 上岡 将也 Data Engineering & Data
Analysis WS#9
⾃⼰紹介 • 上岡 将也(かみおか まさや) - 技術本部 秋葉原ラボ 画像チーム -
修⼠(画像⽣成)→ 2019年4⽉⼊社 • 仕事内容 - AbemaTVやタップル誕⽣などの動画像を中⼼とした 機械学習システムの開発と運⽤ • 趣味 - 剣道:⼩学⽣〜⼤学⽣まで - ゲーム:Rainbow Six Siege 2
1.「タップル誕⽣」とプロフィール画像 2. プロフ審査⾃動化の開発プロセス 3. 実社会へ機械学習を応⽤するときの課題と⼯夫 4. まとめ
「タップル誕⽣」と プロフィール画像
5
6
7
8
9
10
プロフィール画像 11
審査の基準 例: 不鮮明 ⼈物ではない 複数⼈ 他にも… • 顔のサイズが⼩さい • ⼈物の顔を認識できないもの
• 芸能⼈や明らかに本⼈でない • 個⼈情報が含まれている などなど、 実際には⾮常に細かく厳密な基準を設定 出典:メイン写真の審査について[リンク] 12
厳密な基準に基づく プロフィール画像審査の⾃動化 ⽬的 ※以下、プロフィール画像審査 => プロフ審査と略します 13
プロフ審査⾃動化の 開発プロセス
分析 課題設定 収集 前処理 学習 評価 プロフ審査⾃動化の開発プロセス 15 ※⼀部のiconはhttps://icons8.com/app/から引⽤
分析 課題設定 収集 前処理 学習 評価 プロフ審査⾃動化の開発プロセス 16
分析 課題設定 収集 前処理 学習 評価 プロフ審査⾃動化の開発プロセス 17
分析 課題設定 収集 前処理 学習 評価 プロフ審査⾃動化の開発プロセス 18
分析 課題設定 収集 前処理 学習 評価 機械学習への落とし込み 19
分析 課題設定 収集 前処理 学習 評価 20
分析 課題設定 収集 前処理 学習 評価 データセットの作成 21
分析 課題設定 収集 前処理 学習 評価 22
分析 課題設定 収集 前処理 学習 評価 23
分析 課題設定 収集 前処理 学習 評価 パラメータの変更 ※ 評価が悪ければ…
分析 課題設定 収集 前処理 学習 評価 前処理‧データセットの変更 ※ 評価が悪ければ…
分析 課題設定 収集 前処理 学習 評価 機械学習の問題の変更 ※ 評価が悪ければ…
分析 課題設定 収集 前処理 学習 評価 27 解きたい問題やデータセットが決まっているものが多い ※機械学習の研究分野すべてを指しているわけではありません 機械学習の研究分野では…
分析 課題設定 収集 前処理 学習 評価 データセットの作成 実社会に機械学習を 応⽤する場合は この⼆つも重要!!
機械学習への落とし込み 28
実社会へ機械学習を 応⽤するときの課題と⼯夫
実社会へ機械学習を応⽤するときの課題 1. 機械学習への落とし込み - 複雑な基準 - 再学習の難しさ 2. データセットの作成 -
アノテーションミス - アンダーサンプリング 30
実社会へ機械学習を応⽤するときの課題 1. 機械学習への落とし込み - 複雑な基準 - 再学習の難しさ 2. データセットの作成 -
アノテーションミス - アンダーサンプリング 31
課題:機械学習への落とし込み 1. 複雑な基準 • ⽬的=OKかNGかの2クラス分類 • しかし機械学習の観点から⾒ると、分類だけでは解けない 2. 性能改善の際の再学習の難しさ •
特定のNG理由の画像に対する再学習の依頼がよくある 例:「加⼯されている画像がOKとなってしまっているので再学習お願いします。」 32
解決例:プロフ審査 1. 複雑な基準 • 分類、顔検出などを考慮して、フィルタを分ける 2. 性能改善の際の再学習の難しさ • 再学習の頻度によってフィルタを分ける 顔検出
分類 ‧ ‧ ‧ 複数⼈ 承認 加⼯ ※あくまでイメージです ◦ 複数フィルタに分ける 33 ⼈間以外 注意 全体の精度や処理速度、リソースを考慮する必要あり 顔サイズ⼩
実社会へ機械学習を応⽤するときの課題 1. 機械学習への落とし込み - 複雑な基準 - 再学習の難しさ 2. データセットの作成 -
アノテーションミス - アンダーサンプリング 34
実社会へ機械学習を応⽤するときの課題 1. 機械学習への落とし込み - 複雑な基準 - 再学習の難しさ 2. データセットの作成 -
アノテーションミス - アンダーサンプリング 35
アノテーションミス • ⼈間なのでミスは必ず存在する - ただ機械学習にはそれが致命的 - 再アノテーション => コストと 時間
36
アノテーションミス • ⼈間なのでミスは必ず存在する - ただ機械学習にはそれが致命的 - 再アノテーション => コストと 時間
データを綺麗にするためにも機械学習を使う 37
データを綺麗にするための機械学習の使⽤ 1. 公開されている学習済みモデルや外部のAPIを使⽤する 例: 「⼈間以外」の教師ラベルがついたデータから、「⼈間」が写っているものを取り除く 2. ⾃分で学習させたModel_version1の推論を使⽤する 例: Model_version1の推論結果と教師ラベルが違うものを候補として再アノテーションする ※あくまで候補の抽出として使⽤
38
実社会へ機械学習を応⽤するときの課題 1. 機械学習への落とし込み - 複雑な基準 - 再学習の難しさ 2. データセットの作成 -
アノテーションミス - アンダーサンプリング 39
アンダーサンプリング • 不均衡なデータをアンダーサンプリングするときの⼯夫 1. 同⼀⼈物のデータ数を制限する 2. 同⼀⼈物の短期間の申請画像のうち、NGな画像とOKの画像がある場合、学習 データセットに必ず追加する NG OK
プロフ審査の現状 • ⾃動承認のみ適⽤ - 機械学習システムが OK としたものは⾃動で承認、NG としたものを⽬視で再度審査する • 効果
- コスト削減 - 審査の⾼速化 - ブレの防⽌ • 精度(precision) - 99%以上を常にキープ • 品質管理 - ユーザーからの通報だけでなく、⾃動承認したものを⼀部⽬視でも確認 41
まとめ
まとめ • 「タップル誕⽣」のプロフ審査における機械学習の応⽤ - 機械学習への落とし込み や データセットの作成 も重要 • 複数フィルタに分ける
• データを綺麗にすることにも機械学習を使⽤ • 注⽬している研究分野 - 不均衡データ - 半教師あり学習 - 弱教師あり学習 43
ありがとうございました