Upgrade to Pro — share decks privately, control downloads, hide ads and more …

マッチングサービスの画像審査における機械学習の応用 / Application of mach...

CyberAgent
November 07, 2019

マッチングサービスの画像審査における機械学習の応用 / Application of machine learning in image examination

マッチングサービスの画像審査における機械学習の応用
秋葉原ラボ 上岡将也

CyberAgent

November 07, 2019
Tweet

More Decks by CyberAgent

Other Decks in Technology

Transcript

  1. ⾃⼰紹介 • 上岡 将也(かみおか まさや) - 技術本部 秋葉原ラボ 画像チーム -

    修⼠(画像⽣成)→ 2019年4⽉⼊社 • 仕事内容 - AbemaTVやタップル誕⽣などの動画像を中⼼とした 機械学習システムの開発と運⽤ • 趣味 - 剣道:⼩学⽣〜⼤学⽣まで - ゲーム:Rainbow Six Siege 2
  2. 5

  3. 6

  4. 7

  5. 8

  6. 9

  7. 10

  8. 審査の基準 例: 不鮮明 ⼈物ではない 複数⼈ 他にも… • 顔のサイズが⼩さい • ⼈物の顔を認識できないもの

    • 芸能⼈や明らかに本⼈でない • 個⼈情報が含まれている などなど、 実際には⾮常に細かく厳密な基準を設定 出典:メイン写真の審査について[リンク] 12
  9. 課題:機械学習への落とし込み 1. 複雑な基準 • ⽬的=OKかNGかの2クラス分類 • しかし機械学習の観点から⾒ると、分類だけでは解けない 2. 性能改善の際の再学習の難しさ •

    特定のNG理由の画像に対する再学習の依頼がよくある 例:「加⼯されている画像がOKとなってしまっているので再学習お願いします。」 32
  10. 解決例:プロフ審査 1. 複雑な基準 • 分類、顔検出などを考慮して、フィルタを分ける 2. 性能改善の際の再学習の難しさ • 再学習の頻度によってフィルタを分ける 顔検出

    分類 ‧ ‧ ‧ 複数⼈ 承認 加⼯ ※あくまでイメージです ◦ 複数フィルタに分ける 33 ⼈間以外 注意 全体の精度や処理速度、リソースを考慮する必要あり 顔サイズ⼩
  11. プロフ審査の現状 • ⾃動承認のみ適⽤ - 機械学習システムが OK としたものは⾃動で承認、NG としたものを⽬視で再度審査する • 効果

    - コスト削減 - 審査の⾼速化 - ブレの防⽌ • 精度(precision) - 99%以上を常にキープ • 品質管理 - ユーザーからの通報だけでなく、⾃動承認したものを⼀部⽬視でも確認 41
  12. まとめ • 「タップル誕⽣」のプロフ審査における機械学習の応⽤ - 機械学習への落とし込み や データセットの作成 も重要 • 複数フィルタに分ける

    • データを綺麗にすることにも機械学習を使⽤ • 注⽬している研究分野 - 不均衡データ - 半教師あり学習 - 弱教師あり学習 43