Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
マッチング理論に基づく推薦とそれを支えるMLOps開発
Search
CyberAgent
PRO
September 21, 2022
Technology
0
1.9k
マッチング理論に基づく推薦とそれを支えるMLOps開発
CyberAgent
PRO
September 21, 2022
Tweet
Share
More Decks by CyberAgent
See All by CyberAgent
2025年度 生成AI 実践編
cyberagentdevelopers
PRO
4
330
LLMを用いたメタデータベースレコメンド検証
cyberagentdevelopers
PRO
6
1.9k
CodeAgentとMCPで実現するデータ分析エージェント
cyberagentdevelopers
PRO
1
350
SQL Agentによるタップルのデータ利活用促進
cyberagentdevelopers
PRO
1
510
NAB Show 2025 動画技術関連レポート / NAB Show 2025 Report
cyberagentdevelopers
PRO
1
470
【2025年度新卒技術研修】100分で学ぶ サイバーエージェントのデータベース 活用事例とMySQLパフォーマンス調査
cyberagentdevelopers
PRO
8
11k
【CA.ai #1】未来を切り拓くAIエージェントの可能性
cyberagentdevelopers
PRO
4
280
【CA.ai #1】MCP世界への招待:AIエンジニアが創る次世代エージェント連携の世界
cyberagentdevelopers
PRO
2
260
【CA.ai #1】ABEMA のコンテンツ制作を最適化! 生成 AI × クラウド映像編集システム
cyberagentdevelopers
PRO
0
240
Other Decks in Technology
See All in Technology
Aurora DSQLはサーバーレスアーキテクチャの常識を変えるのか
iwatatomoya
1
1k
JTCにおける内製×スクラム開発への挑戦〜内製化率95%達成の舞台裏/JTC's challenge of in-house development with Scrum
aeonpeople
0
230
Language Update: Java
skrb
2
300
Terraformで構築する セルフサービス型データプラットフォーム / terraform-self-service-data-platform
pei0804
1
180
AI開発ツールCreateがAnythingになったよ
tendasato
0
130
RSCの時代にReactとフレームワークの境界を探る
uhyo
10
3.5k
株式会社ログラス - 会社説明資料【エンジニア】/ Loglass Engineer
loglass2019
4
64k
5分でカオスエンジニアリングを分かった気になろう
pandayumi
0
250
COVESA VSSによる車両データモデルの標準化とAWS IoT FleetWiseの活用
osawa
1
290
品質視点から考える組織デザイン/Organizational Design from Quality
mii3king
0
210
これでもう迷わない!Jetpack Composeの書き方実践ガイド
zozotech
PRO
0
900
いま注目のAIエージェントを作ってみよう
supermarimobros
0
310
Featured
See All Featured
YesSQL, Process and Tooling at Scale
rocio
173
14k
Intergalactic Javascript Robots from Outer Space
tanoku
272
27k
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
285
13k
GraphQLとの向き合い方2022年版
quramy
49
14k
Templates, Plugins, & Blocks: Oh My! Creating the theme that thinks of everything
marktimemedia
31
2.5k
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
36
2.5k
For a Future-Friendly Web
brad_frost
180
9.9k
Build your cross-platform service in a week with App Engine
jlugia
231
18k
Why You Should Never Use an ORM
jnunemaker
PRO
59
9.5k
Visualization
eitanlees
148
16k
Art, The Web, and Tiny UX
lynnandtonic
303
21k
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
PRO
23
1.4k
Transcript
マッチング理論に基づく推薦 とそれを支えるMLOps開発 Matsuzuki Daisuke Tomita Yoji
松月 大輔(まつづき だいすけ) 入社:2020年新卒 職種:MLエンジニア 所属:メディア事業部/技術本部 /MDTS/DSC 専門領域:Computer Vision 趣味:スポーツ全般,麻雀,F1観戦
冨田 燿志(とみた ようじ) 入社:2020年新卒 職種:リサーチサイエンティスト 所属:AI事業本部/AI Lab/Econ SI 専門領域:マーケットデザイン, マッチン グ理論, ゲーム理論 趣味:サッカー観戦, 漫画・小説
マッチング理論に基づく推薦
タップルにおけるレコメンド • タップルでマッチングするまで ◦ おすすめされたユーザーのプロフィールを確認 ◦ いいかも(右フリック)かイマイチ(左フリック)か選択 ◦ 送ったいいかもにありがとうをされるか、 相手から届いたいいかもにありがとうをするとマッチング
◦ マッチングが成立するとメッセージ交換が可能に • 適切におすすめ(レコメンド)することが重要
相互推薦システム(RRS) • 相互推薦システム(Reciprocal Recommender Systems; RRS) ◦ ユーザーに他のユーザーをレコメンドするシステム ◦ 例:求人・就職サービス(求職者/企業)、マッチングアプリ(男性/女性)、など
• 通常のRRSの流れ ◦ 行動履歴から男性ユーザーから女性ユーザーへの興味スコアと、 女性ユーザーから男性ユーザーへの興味スコアを、 それぞれ通常の推薦の手法(行列分解など)によって算出 ◦ 集約関数で相互興味スコアを計算 ▪ 平均、幾何平均、調和平均など ◦ 相互興味スコア順に推薦
RRSの課題 • 被推薦機会の集中・不平等 ◦ 一部の人気ユーザーは、多くの人から興味スコアが高くなる。 → 集約された相互興味スコアも人気ユーザーは高くなりやすい。 → 一部のユーザーは何度も数多く推薦されて推薦機会が集中し、
他のユーザーは推薦される機会の少なくなる不平等な状況に陥りやすい。
RRSとマッチング理論 • RRSに重要な2つの観点 ◦ 相互の興味の一致 ▪ ユーザーAがユーザーBに強く興味を持っていても、 ユーザーBがユーザーAに興味がないなら推薦効果はない。 ◦ マッチングキャパシティ
▪ 人気ユーザーAを何度も推薦してユーザー Aが数多くのいいかもを集めても、 ユーザーAが実際にメッセージやり取りや会うことのできる人数は時間的・物理的に限られる。 • マッチング理論 ◦ 人と人、あるいは人とモノの適切な割り当てを、 それぞれの好みと制約(キャパシティ)から決める仕組みを探る経済学・CSの一分野。 • マッチング理論を活用したRRSにより、推薦機会の集中の緩和が期待できる。
マッチング理論に基づく推薦 • MTRS(Matching Theory-based Recommeder Systems) ◦ 男性ユーザーから女性ユーザー、女性ユーザーから男性ユーザへの興味スコアを、 通常の推薦の手法(行列分解など)により算出するのは同様。 ◦
興味スコアと制約をもとに、マッチング理論のアルゴリズムにより 適切なマッチングを計算し、その結果に基づいて推薦を行う。 ◦ マッチングアルゴリズムはさまざま ▪ Gale-Shapley (1962), Choo-Siow (2006), など • プロジェクト ◦ Chen-Hsieh-Lin (2021) を参考に、 Choo-Siow (2006)に基づくRRS の導入を目指している。
MLOpsについて
タップルのレコメンドシステムにおけるMLOps - Feature - batch学習 - FeatureStore - Ranker -
モデルの学習 - 推論APIの提供 - Candidate Generator Development Developer DSC AILab tapple Intern
VertexAI - 2021年5月にリリース - Pipeline - workflowを定義 - FeatureStore -
特徴量ストア - WorkBench(Notebook) - Notebookで簡単にPipelineの設計が可能 VertexAIに関してはサイバーエージェントcam所属の原和希氏による紹介資料が分かり やすい https://speakerdeck.com/cyberagentdevelopers/vertexaidegou-zhu-sitamlopsji-p an-falsequ-rizu-mi
構築したシステムの例
Vertex Pipelines - Kubeflow Pipelinesをフルマネージドで実行可能 - GCP製品と親和性が高い - BigQureyやCloudStorageとのやり取りが多い -
Artifactなど中間生成物も全てGCPで完結できる - Custom JobsはPipeline実行時にインスタンスが立ち上 がる - 運用コストの削減 - 開発者はComponentの繋げ方を定義するPipelineを設 計する - 専門性の横断が可能 - 責任範囲の曖昧さを解消することが重要 BQから学習データを ロードする モデルを学習する
構築したPipelineの例 - データセットの準備 - FeatureStore - CloudStorage - BigQuery -
モデルの学習 - metricsの設定 - モデル精度のモニタリング - ModelRegistry - モデルの保存庫 - モデルのデプロイ - リリースするモデルの書き換え
チュートリアルの設計 - 様々な所属のdeveloperが開発 - 他所属の方や、インターン生など - プロジェクトに入る人が最初に実行するチュートリアルを設計 - Pipelineの設計からデプロイまで -
依存サービスが多くなる - Sparkを使用したい - DataProcを使用 - GCSの扱い方 - Pipelineに関するデータ - 中間生成物 Pipelineの設計のプロセスと、運用ルールをチュートリアルで学ぶ
VertexPipelines導入に関して • 簡単に機械学習ワークフローを 設計可能 • レビュワーの負担が小さい • 共通の処理がある場合の汎用 化も容易 •
GCP製品との親和性が高い メリット • 依存システムが多くなる場合の コード管理 ◦ DataProc(spark) ◦ カスタムエンドポイントの 設計 • testが難しい • componentエラー時の対応 課題