Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
マッチング理論に基づく推薦とそれを支えるMLOps開発
Search
CyberAgent
PRO
September 21, 2022
Technology
0
1.9k
マッチング理論に基づく推薦とそれを支えるMLOps開発
CyberAgent
PRO
September 21, 2022
Tweet
Share
More Decks by CyberAgent
See All by CyberAgent
2025年度 生成AI 実践編
cyberagentdevelopers
PRO
5
400
LLMを用いたメタデータベースレコメンド検証
cyberagentdevelopers
PRO
6
1.9k
CodeAgentとMCPで実現するデータ分析エージェント
cyberagentdevelopers
PRO
1
400
SQL Agentによるタップルのデータ利活用促進
cyberagentdevelopers
PRO
2
530
NAB Show 2025 動画技術関連レポート / NAB Show 2025 Report
cyberagentdevelopers
PRO
1
490
【2025年度新卒技術研修】100分で学ぶ サイバーエージェントのデータベース 活用事例とMySQLパフォーマンス調査
cyberagentdevelopers
PRO
8
12k
【CA.ai #1】未来を切り拓くAIエージェントの可能性
cyberagentdevelopers
PRO
4
320
【CA.ai #1】MCP世界への招待:AIエンジニアが創る次世代エージェント連携の世界
cyberagentdevelopers
PRO
2
270
【CA.ai #1】ABEMA のコンテンツ制作を最適化! 生成 AI × クラウド映像編集システム
cyberagentdevelopers
PRO
0
270
Other Decks in Technology
See All in Technology
ローカルLLMとLINE Botの組み合わせ その2(EVO-X2でgpt-oss-120bを利用) / LINE DC Generative AI Meetup #7
you
PRO
0
120
Findy Team+ QAチーム これからのチャレンジ!
findy_eventslides
0
480
Performance Insights 廃止から Database Insights 利用へ/transition-from-performance-insights-to-database-insights
emiki
0
340
CoRL 2025 Survey
harukiabe
1
230
Contract One Engineering Unit 紹介資料
sansan33
PRO
0
8.9k
AI Agent Dojo #2 watsonx Orchestrateフローの作成
oniak3ibm
PRO
0
140
「もう外には出ない。より快適なフルリモート環境を目指して
mottyzzz
2
150
OpenTelemetry が拡げる Gemini CLI の可観測性
phaya72
2
920
Introduction to Sansan for Engineers / エンジニア向け会社紹介
sansan33
PRO
5
43k
Biz職でもDifyでできる! 「触らないAIワークフロー」を実現する方法
igarashikana
3
1.1k
CNCFの視点で捉えるPlatform Engineering - 最新動向と展望 / Platform Engineering from the CNCF Perspective
hhiroshell
0
110
会社を支える Pythonという言語戦略 ~なぜPythonを主要言語にしているのか?~
curekoshimizu
1
150
Featured
See All Featured
Exploring the Power of Turbo Streams & Action Cable | RailsConf2023
kevinliebholz
36
6.1k
RailsConf 2023
tenderlove
30
1.3k
Navigating Team Friction
lara
190
15k
Product Roadmaps are Hard
iamctodd
PRO
54
11k
Chrome DevTools: State of the Union 2024 - Debugging React & Beyond
addyosmani
9
920
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
34
2.3k
The Illustrated Children's Guide to Kubernetes
chrisshort
49
51k
Balancing Empowerment & Direction
lara
5
690
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
9
990
Dealing with People You Can't Stand - Big Design 2015
cassininazir
367
27k
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
253
22k
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
52
5.6k
Transcript
マッチング理論に基づく推薦 とそれを支えるMLOps開発 Matsuzuki Daisuke Tomita Yoji
松月 大輔(まつづき だいすけ) 入社:2020年新卒 職種:MLエンジニア 所属:メディア事業部/技術本部 /MDTS/DSC 専門領域:Computer Vision 趣味:スポーツ全般,麻雀,F1観戦
冨田 燿志(とみた ようじ) 入社:2020年新卒 職種:リサーチサイエンティスト 所属:AI事業本部/AI Lab/Econ SI 専門領域:マーケットデザイン, マッチン グ理論, ゲーム理論 趣味:サッカー観戦, 漫画・小説
マッチング理論に基づく推薦
タップルにおけるレコメンド • タップルでマッチングするまで ◦ おすすめされたユーザーのプロフィールを確認 ◦ いいかも(右フリック)かイマイチ(左フリック)か選択 ◦ 送ったいいかもにありがとうをされるか、 相手から届いたいいかもにありがとうをするとマッチング
◦ マッチングが成立するとメッセージ交換が可能に • 適切におすすめ(レコメンド)することが重要
相互推薦システム(RRS) • 相互推薦システム(Reciprocal Recommender Systems; RRS) ◦ ユーザーに他のユーザーをレコメンドするシステム ◦ 例:求人・就職サービス(求職者/企業)、マッチングアプリ(男性/女性)、など
• 通常のRRSの流れ ◦ 行動履歴から男性ユーザーから女性ユーザーへの興味スコアと、 女性ユーザーから男性ユーザーへの興味スコアを、 それぞれ通常の推薦の手法(行列分解など)によって算出 ◦ 集約関数で相互興味スコアを計算 ▪ 平均、幾何平均、調和平均など ◦ 相互興味スコア順に推薦
RRSの課題 • 被推薦機会の集中・不平等 ◦ 一部の人気ユーザーは、多くの人から興味スコアが高くなる。 → 集約された相互興味スコアも人気ユーザーは高くなりやすい。 → 一部のユーザーは何度も数多く推薦されて推薦機会が集中し、
他のユーザーは推薦される機会の少なくなる不平等な状況に陥りやすい。
RRSとマッチング理論 • RRSに重要な2つの観点 ◦ 相互の興味の一致 ▪ ユーザーAがユーザーBに強く興味を持っていても、 ユーザーBがユーザーAに興味がないなら推薦効果はない。 ◦ マッチングキャパシティ
▪ 人気ユーザーAを何度も推薦してユーザー Aが数多くのいいかもを集めても、 ユーザーAが実際にメッセージやり取りや会うことのできる人数は時間的・物理的に限られる。 • マッチング理論 ◦ 人と人、あるいは人とモノの適切な割り当てを、 それぞれの好みと制約(キャパシティ)から決める仕組みを探る経済学・CSの一分野。 • マッチング理論を活用したRRSにより、推薦機会の集中の緩和が期待できる。
マッチング理論に基づく推薦 • MTRS(Matching Theory-based Recommeder Systems) ◦ 男性ユーザーから女性ユーザー、女性ユーザーから男性ユーザへの興味スコアを、 通常の推薦の手法(行列分解など)により算出するのは同様。 ◦
興味スコアと制約をもとに、マッチング理論のアルゴリズムにより 適切なマッチングを計算し、その結果に基づいて推薦を行う。 ◦ マッチングアルゴリズムはさまざま ▪ Gale-Shapley (1962), Choo-Siow (2006), など • プロジェクト ◦ Chen-Hsieh-Lin (2021) を参考に、 Choo-Siow (2006)に基づくRRS の導入を目指している。
MLOpsについて
タップルのレコメンドシステムにおけるMLOps - Feature - batch学習 - FeatureStore - Ranker -
モデルの学習 - 推論APIの提供 - Candidate Generator Development Developer DSC AILab tapple Intern
VertexAI - 2021年5月にリリース - Pipeline - workflowを定義 - FeatureStore -
特徴量ストア - WorkBench(Notebook) - Notebookで簡単にPipelineの設計が可能 VertexAIに関してはサイバーエージェントcam所属の原和希氏による紹介資料が分かり やすい https://speakerdeck.com/cyberagentdevelopers/vertexaidegou-zhu-sitamlopsji-p an-falsequ-rizu-mi
構築したシステムの例
Vertex Pipelines - Kubeflow Pipelinesをフルマネージドで実行可能 - GCP製品と親和性が高い - BigQureyやCloudStorageとのやり取りが多い -
Artifactなど中間生成物も全てGCPで完結できる - Custom JobsはPipeline実行時にインスタンスが立ち上 がる - 運用コストの削減 - 開発者はComponentの繋げ方を定義するPipelineを設 計する - 専門性の横断が可能 - 責任範囲の曖昧さを解消することが重要 BQから学習データを ロードする モデルを学習する
構築したPipelineの例 - データセットの準備 - FeatureStore - CloudStorage - BigQuery -
モデルの学習 - metricsの設定 - モデル精度のモニタリング - ModelRegistry - モデルの保存庫 - モデルのデプロイ - リリースするモデルの書き換え
チュートリアルの設計 - 様々な所属のdeveloperが開発 - 他所属の方や、インターン生など - プロジェクトに入る人が最初に実行するチュートリアルを設計 - Pipelineの設計からデプロイまで -
依存サービスが多くなる - Sparkを使用したい - DataProcを使用 - GCSの扱い方 - Pipelineに関するデータ - 中間生成物 Pipelineの設計のプロセスと、運用ルールをチュートリアルで学ぶ
VertexPipelines導入に関して • 簡単に機械学習ワークフローを 設計可能 • レビュワーの負担が小さい • 共通の処理がある場合の汎用 化も容易 •
GCP製品との親和性が高い メリット • 依存システムが多くなる場合の コード管理 ◦ DataProc(spark) ◦ カスタムエンドポイントの 設計 • testが難しい • componentエラー時の対応 課題