Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
マッチング理論に基づく推薦とそれを支えるMLOps開発
Search
CyberAgent
PRO
September 21, 2022
Technology
0
1.7k
マッチング理論に基づく推薦とそれを支えるMLOps開発
CyberAgent
PRO
September 21, 2022
Tweet
Share
More Decks by CyberAgent
See All by CyberAgent
Unity6世代のアップデートをサラッとまとめ
cyberagentdevelopers
PRO
0
33
Unity6の新機能 STPについての話
cyberagentdevelopers
PRO
0
22
Unity 6 シェーダーWarmupガイド
cyberagentdevelopers
PRO
0
14
Unity6 の Android周辺の アップデートについて
cyberagentdevelopers
PRO
0
28
ジャンプTOONにおけるサイトマップの自動生成手法について
cyberagentdevelopers
PRO
0
46
ABEMA スマートテレビアプリケーションのパフォーマンス改善: 業界トップクラスを目指して / Muddy Web #10 ~Special Edition~ 【ゲスト: pixiv】
cyberagentdevelopers
PRO
0
29
未来のテレビを形づくる ABEMAのグロース戦略:ユーザー体験と品質向上のアプローチ
cyberagentdevelopers
PRO
1
470
IBC 2024 動画技術関連レポート / IBC 2024 Report
cyberagentdevelopers
PRO
1
250
生成AIは安心・安全に貢献できるのか
cyberagentdevelopers
PRO
0
55
Other Decks in Technology
See All in Technology
プロダクト価値を引き上げる、「課題の再定義」という習慣
moeka__c
0
210
Microsoft Ignite 2024 最新情報!Microsoft 365 Agents SDK 概要 / Microsoft Ignite 2024 latest news Microsoft 365 Agents SDK overview
karamem0
0
190
地方企業がクラウドを活用するヒント
miu_crescent
PRO
1
110
論文紹介 ”Long-Context LLMs Meet RAG: Overcoming Challenges for Long Inputs in RAG” @GDG Tokyo
shukob
0
270
AIエージェントについてまとめてみた
pharma_x_tech
11
7.9k
20250129 Findy_テスト高活用化
dshirae
0
230
Skip Skip Run Run Run ♫
temoki
0
360
【5分でわかる】セーフィー エンジニア向け会社紹介
safie_recruit
0
18k
MCP server を作って Claude Desktop アプリから kintone へアクセスすると楽しい
r3_yamauchi
PRO
1
120
[JAWS-UG栃木]地方だからできたクラウドネイティブ事例大公開! / jawsug_tochigi_tachibana
biatunky
0
130
第27回クラウド女子会 ~re:Invent 振り返りLT会~ 宣言型ポリシー、使ってみたらこうだった!
itkr2305
0
290
企業テックブログにおける執筆ネタの考え方・見つけ方・広げ方 / How to Think of, Find, and Expand Writing Topics for Corporate Tech Blogs
honyanya
0
810
Featured
See All Featured
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
226
22k
The Psychology of Web Performance [Beyond Tellerrand 2023]
tammyeverts
45
2.3k
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
44
7k
Music & Morning Musume
bryan
46
6.3k
VelocityConf: Rendering Performance Case Studies
addyosmani
327
24k
Fontdeck: Realign not Redesign
paulrobertlloyd
82
5.3k
How STYLIGHT went responsive
nonsquared
96
5.3k
Documentation Writing (for coders)
carmenintech
67
4.6k
Reflections from 52 weeks, 52 projects
jeffersonlam
348
20k
How GitHub (no longer) Works
holman
312
140k
XXLCSS - How to scale CSS and keep your sanity
sugarenia
248
1.3M
It's Worth the Effort
3n
184
28k
Transcript
マッチング理論に基づく推薦 とそれを支えるMLOps開発 Matsuzuki Daisuke Tomita Yoji
松月 大輔(まつづき だいすけ) 入社:2020年新卒 職種:MLエンジニア 所属:メディア事業部/技術本部 /MDTS/DSC 専門領域:Computer Vision 趣味:スポーツ全般,麻雀,F1観戦
冨田 燿志(とみた ようじ) 入社:2020年新卒 職種:リサーチサイエンティスト 所属:AI事業本部/AI Lab/Econ SI 専門領域:マーケットデザイン, マッチン グ理論, ゲーム理論 趣味:サッカー観戦, 漫画・小説
マッチング理論に基づく推薦
タップルにおけるレコメンド • タップルでマッチングするまで ◦ おすすめされたユーザーのプロフィールを確認 ◦ いいかも(右フリック)かイマイチ(左フリック)か選択 ◦ 送ったいいかもにありがとうをされるか、 相手から届いたいいかもにありがとうをするとマッチング
◦ マッチングが成立するとメッセージ交換が可能に • 適切におすすめ(レコメンド)することが重要
相互推薦システム(RRS) • 相互推薦システム(Reciprocal Recommender Systems; RRS) ◦ ユーザーに他のユーザーをレコメンドするシステム ◦ 例:求人・就職サービス(求職者/企業)、マッチングアプリ(男性/女性)、など
• 通常のRRSの流れ ◦ 行動履歴から男性ユーザーから女性ユーザーへの興味スコアと、 女性ユーザーから男性ユーザーへの興味スコアを、 それぞれ通常の推薦の手法(行列分解など)によって算出 ◦ 集約関数で相互興味スコアを計算 ▪ 平均、幾何平均、調和平均など ◦ 相互興味スコア順に推薦
RRSの課題 • 被推薦機会の集中・不平等 ◦ 一部の人気ユーザーは、多くの人から興味スコアが高くなる。 → 集約された相互興味スコアも人気ユーザーは高くなりやすい。 → 一部のユーザーは何度も数多く推薦されて推薦機会が集中し、
他のユーザーは推薦される機会の少なくなる不平等な状況に陥りやすい。
RRSとマッチング理論 • RRSに重要な2つの観点 ◦ 相互の興味の一致 ▪ ユーザーAがユーザーBに強く興味を持っていても、 ユーザーBがユーザーAに興味がないなら推薦効果はない。 ◦ マッチングキャパシティ
▪ 人気ユーザーAを何度も推薦してユーザー Aが数多くのいいかもを集めても、 ユーザーAが実際にメッセージやり取りや会うことのできる人数は時間的・物理的に限られる。 • マッチング理論 ◦ 人と人、あるいは人とモノの適切な割り当てを、 それぞれの好みと制約(キャパシティ)から決める仕組みを探る経済学・CSの一分野。 • マッチング理論を活用したRRSにより、推薦機会の集中の緩和が期待できる。
マッチング理論に基づく推薦 • MTRS(Matching Theory-based Recommeder Systems) ◦ 男性ユーザーから女性ユーザー、女性ユーザーから男性ユーザへの興味スコアを、 通常の推薦の手法(行列分解など)により算出するのは同様。 ◦
興味スコアと制約をもとに、マッチング理論のアルゴリズムにより 適切なマッチングを計算し、その結果に基づいて推薦を行う。 ◦ マッチングアルゴリズムはさまざま ▪ Gale-Shapley (1962), Choo-Siow (2006), など • プロジェクト ◦ Chen-Hsieh-Lin (2021) を参考に、 Choo-Siow (2006)に基づくRRS の導入を目指している。
MLOpsについて
タップルのレコメンドシステムにおけるMLOps - Feature - batch学習 - FeatureStore - Ranker -
モデルの学習 - 推論APIの提供 - Candidate Generator Development Developer DSC AILab tapple Intern
VertexAI - 2021年5月にリリース - Pipeline - workflowを定義 - FeatureStore -
特徴量ストア - WorkBench(Notebook) - Notebookで簡単にPipelineの設計が可能 VertexAIに関してはサイバーエージェントcam所属の原和希氏による紹介資料が分かり やすい https://speakerdeck.com/cyberagentdevelopers/vertexaidegou-zhu-sitamlopsji-p an-falsequ-rizu-mi
構築したシステムの例
Vertex Pipelines - Kubeflow Pipelinesをフルマネージドで実行可能 - GCP製品と親和性が高い - BigQureyやCloudStorageとのやり取りが多い -
Artifactなど中間生成物も全てGCPで完結できる - Custom JobsはPipeline実行時にインスタンスが立ち上 がる - 運用コストの削減 - 開発者はComponentの繋げ方を定義するPipelineを設 計する - 専門性の横断が可能 - 責任範囲の曖昧さを解消することが重要 BQから学習データを ロードする モデルを学習する
構築したPipelineの例 - データセットの準備 - FeatureStore - CloudStorage - BigQuery -
モデルの学習 - metricsの設定 - モデル精度のモニタリング - ModelRegistry - モデルの保存庫 - モデルのデプロイ - リリースするモデルの書き換え
チュートリアルの設計 - 様々な所属のdeveloperが開発 - 他所属の方や、インターン生など - プロジェクトに入る人が最初に実行するチュートリアルを設計 - Pipelineの設計からデプロイまで -
依存サービスが多くなる - Sparkを使用したい - DataProcを使用 - GCSの扱い方 - Pipelineに関するデータ - 中間生成物 Pipelineの設計のプロセスと、運用ルールをチュートリアルで学ぶ
VertexPipelines導入に関して • 簡単に機械学習ワークフローを 設計可能 • レビュワーの負担が小さい • 共通の処理がある場合の汎用 化も容易 •
GCP製品との親和性が高い メリット • 依存システムが多くなる場合の コード管理 ◦ DataProc(spark) ◦ カスタムエンドポイントの 設計 • testが難しい • componentエラー時の対応 課題