Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
AlphaGo에서 시작하는 인공지능
Search
Leonardo YongUk Kim
December 11, 2021
Technology
1
310
AlphaGo에서 시작하는 인공지능
AlphaGo, Alpha Zero에서 시작해서 여러 인공지능의 개념을 살펴봅니다.
Leonardo YongUk Kim
December 11, 2021
Tweet
Share
More Decks by Leonardo YongUk Kim
See All by Leonardo YongUk Kim
Recap: Kotlin Language Features in 2.0 and Beyond (Michail Zarečenskij)
dalinaum
0
650
Compose Multiplatform 101
dalinaum
3
650
Kotlin 2.0을 통해 알아보는 코틀린의 미래
dalinaum
1
2.5k
실리콘밸리 스타트업에서 일어난 일
dalinaum
0
140
Zip: Data compression (20분만에 배우는 압축 알고리즘)
dalinaum
1
2.5k
안드로이드 빌드: 설탕없는 세계
dalinaum
0
140
Obfuscation 101 @ Naver Tech Concert
dalinaum
4
610
Realm은 어떻게 효율적인 데이터베이스를 만들었나?
dalinaum
1
610
MVC부터 MVVM, 단방향 데이터 흐름까지
dalinaum
5
880
Other Decks in Technology
See All in Technology
AIにどこまで任せる?実務で使える(かもしれない)AIエージェント設計の考え方
har1101
3
1.2k
DenoとJSRで実現する最速MCPサーバー開発記 / Building MCP Servers at Lightning Speed with Deno and JSR
yamanoku
1
160
AWS と定理証明 〜ポリシー言語 Cedar 開発の舞台裏〜 #fp_matsuri / FP Matsuri 2025
ytaka23
9
2.6k
監視のこれまでとこれから/sakura monitoring seminar 2025
fujiwara3
7
1.1k
成立するElixirの再束縛(再代入)可という選択
kubell_hr
0
480
Clineを含めたAIエージェントを 大規模組織に導入し、投資対効果を考える / Introducing AI agents into your organization
i35_267
4
1k
BigQuery Remote FunctionでLooker Studioをインタラクティブ化
cuebic9bic
2
140
菸酒生在 LINE Taiwan 的後端雙刀流
line_developers_tw
PRO
0
700
自分を理解するAI時代の準備 〜マイプロフィールMCPの実装〜
edo_m18
0
110
doda開発 生成AI元年宣言!自家製AIエージェントから始める生産性改革 / doda Development Declaration of the First Year of Generated AI! Productivity Reforms Starting with Home-grown AI Agents
techtekt
0
180
白金鉱業Meetup_Vol.19_PoCはデモで語れ!顧客の本音とインサイトを引き出すソリューション構築
brainpadpr
2
450
Long journey of Continuous Delivery at Mercari
hisaharu
1
230
Featured
See All Featured
It's Worth the Effort
3n
184
28k
Facilitating Awesome Meetings
lara
54
6.4k
Bash Introduction
62gerente
614
210k
What's in a price? How to price your products and services
michaelherold
245
12k
Site-Speed That Sticks
csswizardry
10
640
Typedesign – Prime Four
hannesfritz
42
2.7k
The Invisible Side of Design
smashingmag
299
51k
The Cult of Friendly URLs
andyhume
79
6.4k
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
252
21k
Put a Button on it: Removing Barriers to Going Fast.
kastner
60
3.9k
A Modern Web Designer's Workflow
chriscoyier
693
190k
ReactJS: Keep Simple. Everything can be a component!
pedronauck
667
120k
Transcript
LEONARDO YONGUK KIM
[email protected]
ALPHAGOীࢲ दೞח ੋҕמ
ALPHAGOোഄ AlphaG o Fan Goח ੌࠄয۽ ߄قਸ 2015 2016.
3. 9 AlphaG o Lee 2017. 5. 17 AlphaG o M aster AlphaG o Zero 2017. 10. 19 2018.12.7 Alpha Zero ౸ റ (2ױ)җ Ѿ೧ࢲ थܻ ࣁج (9ױ)җ Ѿ೧ࢲ थܻ ӂ ೧Ѿػ 16݅ ӝࠁ ण. 48ѐ TPU ৡۄੋ Ҵ 60োथ ழઁীѱ थܻ 4ѐ TPU. 10ߓ ীց ബਯ ੋр धহ (ӝࠁ X) ߄ق ࠂ ঌҊ ݃झఠ৬ ऱਕ 89थ 11ಁ ࣳӝ, झ, झఋ 2 ࠂ Goܳ ܴীࢲ ઁ৻
ݾ ࣻ ੍ӝ न҃ݎ ъച ण ੋҕמ ࢎਊ
ࣻ ੍ӝ MiniMax Monte Carlo Method Monte Carlo Tree Search
MINIMAX
TIC TAC TOE O O O X X O X
O X X O X O - ݢ 3ѐܳ աۆ ֬ ࢎۈ ӝח ѱ - ب ࠂೠ ѱ ݽٚ ҃ ࣻܳ ࠅ ࣻ . - 9 x 8 x 7 x 6 x 5 x 4 x 3 x 2 = 9! O X O O X X O
O O O O O O O O O ROOT
O X O X O X O X O X O X O X O X O X O O X O O X O O X O O X O O X O O X O ֢٘ 1 0 -1 0 -1 -1 ۚ ܖ ӝݶ 1, ࠺ӝݶ 0,ݶ -1 ROOT ੑীࢲ धۄҊب פ. ݽٚ ֢٘ח ध ࠗݽੑפ.
O O O O O O O O O ROOT
O X O X O X O X O X O X O X O X O X O O X O O X O O X O O X O O X O O X O ֢٘ 1 0 -1 0 -1 -1 ۚ ܖ MY TURN ࣻܳ ࢶఖೞҊ ࣻо ࠳ےܳ ઁѢ
O O O O O O O O O ROOT
O X O X O X O X O X O X O X O X O X O O X O O X O O X O O X O O X O O X O ֢٘ ۚ ܖ YOUR TURN ࣻܳ ࢶఖ ࣻо ח ࠳ےח ઁѢ
O O O O O O O O O ROOT
O X O X O X O X O X O X O X O X O X O O X O O X O O X O O X O O X O O X O ۚ MY TURN ࣻܳ ࢶఖ
None
- (19 x 19)! - 19 x 19 = 361
- 361 x 360 x 359 x 358 …. x 2 - 26744876149564427899473201526425013452390919904351815721084971068304474 7437531294143149639831010372677443849403182318969228741381559487197927737 64930851408087543453474101182344879484162985721534603948370802204778391 45379274006646833128661312942336287321284636912937632439789397222224742 52826712518506072707918591157844247991603554375217925635775598044364577 67819229829195896785070533331329604395837235880245012197523337773352603 746540435758711323413067205097510873318696774954051195138779582025728045 717997197429383169516478847881483048003766654327470766455887103023601081 7570107837589904730596477443151082000948524919032642496288011069869044 42993333787797164945029657423253487692054233010201128993815319944149127 636942433924747935483481769568213401600000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 ߄ق ҃ ࣻ
MONTE CARLO METHOD
ਗਯਸ য ࠇद - ਗਯਸ णפ. - ਗਯਸ ా҅ਵ۽ ҳೡ
ࣻ ਸөਃ?
MONTE CARLO METHOD - ےؒೞѱ ਸ ନद. - ਗ উ
іࣻо 314ѐ, ࢎпഋ উ іࣻо 400ѐۄ о೧ ࠇद. - 4(R ^ 2) : π(R ^ 2) = 400 : 314, π = 3.14 - ࠙ ਸ ݆ ନਸ ࣻ۾ ؊ ೠ ਗਯਸ ঌѱ ؾפ.
ޅ ࠊب ݆ ࠁݶ ঋਸө?
O O O O O O O O O ROOT
ࣻ റ ےؒਵ۽ 10౸ فয пп थܫਸ ҳೣ. 40% PLAYOUT 60% 30% 20% 80% 30% 20% 50% 10% - п ࣻ ݃ റ, ےؒೞѱ 10౸ਸ فয (Playout) थܫਸ ҳೣ. (9 x 10 = 90౸) - थܫ о ֫ 5ߣ૩ ࣻ(80%)о ୭ҊҊ ౸ױೣ. - दр ؊ ݆ ݶ Playout പࣻܳ ט۰ࢲ न܉بܳ ૐоदఆ ࣻ . (100౸ فӝ) - Playout പࣻо טযաݶ טযզ ࣻ۾ MiniMax Ѿҗ৬ ਬࢎ೧ Ѫ. - Playout, Rollout, Simulation ١ ױযо ࢎਊ ؽ.
Ӓېب ࣻ ৻ী ݽف ےؒ ખ Ӓۧ ঋաਃ?
MONTE CARLO TREE SEARCH
O O O O O O O O O ROOT
40% PLAYOUT 60% 30% 20% 80% 30% 20% 50% 10% - ےؒೞѱ فযࢲ थܫ ֫ ࣻܳ ݢ Ҋܵפ.
O O O O O O O O O ROOT
- ઁ थܫ ֫ 5ߣ૩ ࣻ ਤ۽ ےؒ Ѿਸ פ. (70%) - աݠ ٜࣻب ےؒ Ѿਸ оՔפ. (30%) - ֬ ࣻо ӝ ٸޙੑפ.
O O O O O O O O O ROOT
- 5ߣ૩ ࣻী ೧ যו ب ےؒ Ѿਸ ೮ਵݶ, 5ߣ૩ ࣻ धب ܻী ನೣפ. - ઁ ےؒೞѱ ف݅ ف ࣻח ҊೞҊ פ. - ର ৌ۰ ח ֢٘о ݆ই פ. X O X O X O O X X O O X O X O X
None
- झח 1996֙ 2ਘ 10ੌ MiniMax ۽ ࠂ. (गಌ ஹೊఠ
٩ ࠶ܖ) - ୭Ӕীח Monte Carlo Tree Search۽ ോಪਵ۽ب Ӓے٘݃झ ఠܳ ӣ. - ೞ݅ ߄ق ࠛоמ೮. - ഛܫਵ۽ ೞӝূ ڜࣻо ցޖ ݆ . ࣻ ੍ӝ݅ਵ۽ ࠙ೠоਃ?
ח Ҕ݅ ٮઉࠁݶ উغਃ?
(ࢎۈ ࢤпী) ח Ҕ݅ ٮઉࠁݶ উغਃ?
न҃ݎ न҃ݎ CNN
न҃ݎ
ӝ नഐܳ ߉ই оҕ೧ ӝ नഐܳ ࠁղח Ѫ? ۠
X1 X2 Y W1 W2 Y = W1X1 + W2X2
ࣻ ݆ ۠ Ѿ೧ (֎ਕ) מਸ ٜ݅যմ Ѫ ۢ, ࣻ рױೠ о ো(ੋҕ ۠)ਸ ֎ਕܳ ٜ݅ݶ যڌѱ ؼөਃ?
- ӝ 0~9ܳ Ҵ NISTо ࣻ. - о۽ 28, ࣁ۽
28 ࣄ۽ ҳࢿ. - ೠ Ӗ 784 ࣄ (28 x 28) MNIST
None
- ࡈр࢝ ਵݶ উػח ڷ. - ۆ࢝ ਵݶ
જח ڷ. - 0 оؘח ਵݶ উػ. - 1 оؘח ਸ оמࢿ ֫ . - ࡈъ -1, ی 1۽ ࠁ. Ѩ ࢝ 0 ӝ ࠂೞ.
X1 X784 W1 W784 W1X1 + … + W784X784 =
Y Yо ݶ ӝо 5ۄח ڷ.
- W1X1 + … + W784X784 = Y - X1ࠗఠ
X784ө ֎ਃ? ੑ۱ 784ѐ - W1ࠗఠ W784ө ֎ਃ? оо 784ѐ - ইۄ࠺ই ंо 0ࠗఠ 9өਗ਼ইਃ? оо 7840ѐ (784 x 10) न҃ݎ
X1 X2 Y1 W1 W2 X784 … Y2 Y10 …
784ѐ ੑ۱ 0ੋоਃ? 1ੋоਃ? 9ੋоਃ? ߣ૩ ࣄ W10 W7840 7840ѐ о 10ѐ ۱
X1 X2 Y1 X784 … Y2 Y10 … ੑ۱க ۱க
оח ־о աਃ?
- ӝ҅о ҕࠗೞӝ ٸޙী ӝ҅ ण - ӝ҅о ҕࠗೡ ࣻ
ѱ ޙઁ৬ ਸ ળ࠺פ. - MNISTۄח ӝ ࣁب ৬ э ઓפ. - ف ઙܨ ؘఠܳ ৮ ܻ࠙ೡ ӝӝ৬ ಞਸ ӝ҅о ইմҊ ࠁݶ ؾפ. - ण ؘఠܳ оҊ ࣻ হ ࠙ਸ ߈ࠂ ೞݴ оܳ ઑӘঀ Ҋоݴ ৢ߄ܲ ݽ؛ਸ ٜ݅যцפ. - ਸ Ҋ णਸ दఃח Ѫਸ ب णۄҊ פ. ӝ҅ण
None
- Ӓېਸ ਤ೧ GPUח ࣻ হ Ӓܿ৬ ࡄ ై ؼ
ܳ ҅ೞҊ ژ ҅פ. - GPU ఌਗೡ ҅ מ۱ ݠन۞җ ঐഐ ചತ ী פ. - ߈ݶ GPUח ਬোೠ ౸ױਸ ޅפ. - 1950֙ ࠗఠ োҳػ AIо ੜ উغ؍ ਬ ೞ ա۽ ো מ۱ ࠗ ঠӝ ؽ. - 1970֙ AI ѹ - 1980֙ AI ѹ - 2012֙ীঠ AIо ࡄਸ ࠆ. ݠन۞ب GPUо פ.
NVIDIA ୡഋ GPU (2রо)
GOOGLE ݠन۞ ਊ TPU (TENSOR PROCESSING UNIT)
־о աਃ?
None
None
࠙ܨ ޙઁܳ ۽Ӓې߁ ਵ۽ ೧Ѿೡ ࣻ হաਃ?
None
- ೦࢚ ৻о ਸ ࣻ णפ. (Ҋন৬ ъই ࠙ܨب ۽Ӓې߁
য۰) - ੋр যח ݽഐೞҊ ܻо ਗೞח Ѿҗܳ ӝ য۰ ࣻ णפ. - ৻о ࢤѹب ৻ੋ ؘఠب ӝ҅ णਸ दఃݶ ೧Ѿؾפ. - ݠन ۞ ѾҴ ܻо ҙਵ۽ ܖ؍ ࠗ࠙ਸ ೧Ѿ೧ સפ. ҙ ঌҊ્ܻਵ۽ ಽӝ য۵णפ
- য়ܲଃ ޙઁח ࢶਸ Ӓযࢲ ޙઁܳ ೧Ѿೡ ࣻ হ. -
ࠂೠ ޙઁח க ۨযо ਃ. ੑ۱கҗ ۱கਵ۽ח উغח ޙઁ
X1 X2 X784 … … ੑ۱க Y1 Y2 Y10 …
۱க ץக - ࠂೠ ޙઁח 1ѐ ࢚ ץக(Hidden Layer)ਸ ٟ݅פ. - 2ѐ ࢚ ץகਸ णೞח ҃ Deep LearningۄҊ ೞݴ बக न҃ݎ (Deep Neural Network)ۄח ݺடਸ ࢎਊפ. - Microsoftח 152கਸ о ResNetਸ ٜ݅ റ 1001ѐ கө ٜ݅णפ.
MNIST पઁ ٘ ؘݽ
CNN
Ҋন VS ѐ - बகݎਵ۽ח ࠙ܨ ޙઁܳ ࠂೞӝ য۰ਛणפ.
- CNN (Convolutional Neural Network) AlexNet աয়ݶࢲ ޙઁܳ ೧Ѿ. - 2012֙ 9ਘ 30ੌࠗఠ ஹೊఠо ҙ ਸ ֈযࢲӝ द೮णפ.
0 1 2 3 4 5 6 7 8 KERNEL
೨ब ੑ۱ 0 1 2 3 ழօ 19 25 37 43 X = - 0 x 0 + 1 x 1 + 3 x 2 + 4 + 3 = 19 - “ழօ” “ ఠ”ۄҊ ࢤпೞݶ ؾפ. ఠ۽ ؘఠܳ оҕೞח Ѫ. - ఠ݃ ౠࢿਸ ъചೠҊ ࢤпೞҊ णפ. - যڃ ఠח ਮҘਸ ъച? - যڃ ఠח ӈա ܳ ؊ ੜ ࠁѱ ъച? э ࢚࢝ՙܻ ғೞҊ ؊פ.
X1 X2 X784 … … ੑ۱க Y1 Y2 Y10 …
۱க ץக ழօ 3ѐ ఠ
CNNਸ ా೧ റࠁܳ ҳೞҊ ހప ܳ۽ ܻ ࢲ۽ ࣁࠗੋ ࣻܳ
੍णפ.
CNN पઁ ٘ ؘݽ
ъചण ъചण
None
0ࠗఠ 8ө ਸ ࢚కۄҊ ࢤпद. ࢚ೞઝ ೞաܳ Ҋܰח Ѫਸ
ঘ࣌ۄҊ ࠁҊਃ.
ъചण - ഒ ۨ (Self Play)ܳ ೞݴ प۱ਸ ט۰х. -
(࢚క, ঘ࣌, थಁ ৈࠗ)ܳ оҊ ण, റ ࢚కী ೧ ࣻ೯೧ঠ ೡ ঘ࣌ਸ ঌ۰ષ. - ঌҊח झझ۽ ؊ ъ೧. (ࢎ णೠ ӝࠁח ӂ ೧Ѿػ 16݅ ӝࠁ. ࠗ࠙ അ ۽о ইש.) - CNN (଼ݎ, оݎ) + ހప ܳ۽ ܻ ࢲ + ъച ण - ঌ ઁ۽ח ӝࠁ णب ೞ ঋҊ ъച ण݅ਵ۽ ֎ਕܳ ҳ୷. X1 X2 X784 … … ࢚క Y1 Y2 Y10 … ঘ࣌ ץக ழօ
MINIMAX۽ ೧ب ؾפ. ъചण + न҃ݎ + ހపܳ۽ ܻ ࢲ۽
ٜ݅णפ. ALPHAZEROی э ߑधਵ۽ਃ.
ALPHA ZERO ۿ ؘݽ
ੋҕמ ࢎਊ ܻ࠭ ಣо ߣӝ ࢤࢿ न҃ݎ ਯ
೯ ର GPT-3 न࠙ૐ ੋध ୁࠈ नਊಣоݽ؛
- “ঘ࣌ ഴܯೞҊ ࠺ ഴܯ೮णפ.” -> ଵ (୶ୌ) - “ցޖ
ਤҊ Ѣܻо ࡞೮णפ.” -> Ѣ (࠺୶) - CNNਵ۽ णदெ ࢜۽ ܻ࠭ী ೧ ୶ୌੋ ࠺୶ੋ ഛੋ. ܻ࠭ ಣо
- RNNਸ ࢎਊ. CNNҗ ର ץக ؘఠܳ द ץகਵ۽ (ӝর۱)
- ҳӖ न҃ݎ ӝ߈ ߣӝܳ ݅ٚ റ ֎ߡ Ҋ ١ ࠗ࠙ न҃ݎਵ۽. - ҳӖ য ܳ Ҋਊೞ ঋחҊ ೣ. ߣӝ RNN Y X RNN I RNN LOVE RNN YOU RNN դ RNN օ RNN ࢎی೧
- GAN (Generative Adversarial Network) - ف ࢎۈ ઓೞ
ঋ ࢎۈ. ࢤࢿ न҃ݎ
CNNਸ ਊ೧ࢲ о ܳ ٜ݅য ղח GENERATOR৬ о ܳ ౸ݺೞח
DISCRIMINATORо ݀ೣ. थܫ 50%о ؼ ٸө ߈ࠂೞݶ о ࢤࢿ.
IMAGE COLORING & IMAGE NOISE REDUCTION
None
ਯ ೯ ର
None
- openAIо ݅ٚ ੋҕמ. - Generative Pre-trained Transformer 3 -
ߣҗ ച, ޙ оמ - ࠺ب ण - “I love you so much”ী ೧ ਵ۽ ण. - I -> Love - I love -> you - I love you -> so - I love you so -> much GPT-3
GPT-2о ೠҴয ؘݽо যࢲ ੋਊ. SKTо ݅ٚ KOGPT2
- न࠙ૐ ղਊ ੋध. - о न࠙ૐੋח Ѩૐ೧ঠೣ. - CNNਸ
ਊ. न࠙ૐ ੋध
- ࢚ਗ ച ࢸ҅. ୁࠈ റ पઁ ࢎۈ .
- ୡӝ ୁࠈ RNNਵ۽ ҳഅ - బஎ, ण, QA ਵ۽ . - য়ח 89.7%, য়ߛח 34.1% ࢚ ୁࠈਵ۽ ৮ܐ. - ੌ߈೯ 10% بо ୁࠈ . ୁࠈ
- ਬ ੑ۱ ղਸ ࠙ࢳ೧ࢲ زਵ۽ Ә. Әా ز ݽਵӝ
- ৈ۞ Ҋё ؘఠܳ ਊ೧ ݠन۞ਸ ਊ. - नਊಣоܳ ా೧
नਊ. नਊಣоݽഋ
хࢎפ.