Upgrade to Pro — share decks privately, control downloads, hide ads and more …

Just Deploy It! How to Ship Your ML Model to Pr...

Just Deploy It! How to Ship Your ML Model to Production

Once upon a time in the kingdom of Artificial Intelligence, there were data scientists who worked hard on their complex researches and ML models development. But then the day of atonement came - time to deploy the models to production. And at first, it seemed that everything they’ve been building so hard started to fall apart slowly piece by piece. But as data scientist read more manuscripts they’ve discovered there are many ways to ship your model using the open-source library with not much effort to be applied.
This talk will uncover the ways to ship the model to production - automated as well as potential custom solutions and also tools and libraries which can ease this process.

Marianna Diachuk

October 29, 2019
Tweet

More Decks by Marianna Diachuk

Other Decks in Programming

Transcript

  1. Just deploy it! How to ship your ML model to

    production. M A R I A N N A D I A C H U K 1
  2. @dark_matter88_ A B O U T M E • Data

    scientist based in Kyiv (Ukraine) • Developed and deployed multiple ensemble models • Leaded a small but proud team of 2 scientists and 1 data engineer • Supports use of software engineering best practices in data science 2
  3. @dark_matter88_ A G E N D A 1. Things to

    focus on before deployment 2. How to deploy your model from Jupyter Notebooks 3. How to build a custom solution 3
  4. @dark_matter88_ O N C E U P O N A

    T I M E T H E R E W E R E D ATA S C I E N T I S T S D O I N G T H E I R M A G I C R E S E A R C H … 4
  5. @dark_matter88_ O N C E U P O N A

    T I M E T H E R E W E R E D ATA S C I E N T I S T S D O I N G T H E I R M A G I C R E S E A R C H … 5
  6. @dark_matter88_ 9 quality of predictions insights cleanliness of data S

    O F T WA R E E N G I N E E R D ATA S C I E N T I S T
  7. @dark_matter88_ 10 quality of predictions insights cleanliness of data quality

    of code user acceptance test coverage maintainability… S O F T WA R E E N G I N E E R D ATA S C I E N T I S T
  8. @dark_matter88_ W H AT D O W E H AV

    E ? Model Features 13
  9. @dark_matter88_ W H AT D O W E H AV

    E ? Model Features 14
  10. @dark_matter88_ W H AT D O W E H AV

    E ? Model Features Raw data 15
  11. @dark_matter88_ W H AT D O W E H AV

    E ? Model Features Raw data 16
  12. @dark_matter88_ W H AT D O W E H AV

    E ? Model Features Raw data Pipeline 17
  13. @dark_matter88_ W H AT D O W E H AV

    E ? 19 Research environment
  14. @dark_matter88_ W H AT D O W E H AV

    E ? 20 System with its characteristics Research environment
  15. @dark_matter88_ D E P L O Y M E N

    T D E S I G N D E P E N D S O N … • Type of production data 21
  16. @dark_matter88_ D E P L O Y M E N

    T D E S I G N D E P E N D S O N … • Type of production data 22 • Architecture of production system
  17. @dark_matter88_ A R C H I T E C T

    U R E O F P R O D U C T I O N S Y S T E M part of monolith system M L 23
  18. @dark_matter88_ A R C H I T E C T

    U R E O F P R O D U C T I O N S Y S T E M part of monolith system M L microservice M L 24
  19. @dark_matter88_ A R C H I T E C T

    U R E O F P R O D U C T I O N S Y S T E M part of monolith system M L microservice M L M L module 25
  20. @dark_matter88_ • Type of production data • Architecture of production

    system • Infrastructure of production system 26 D E P L O Y M E N T D E S I G N D E P E N D S O N …
  21. @dark_matter88_ 27 D E P L O Y M E

    N T D E S I G N D E P E N D S O N …
  22. @dark_matter88_ Y O U C A N D E P

    L O Y Y O U R M O D E L … 28 - as a part of the system
  23. @dark_matter88_ Y O U C A N D E P

    L O Y Y O U R M O D E L … 29 - from - as a part of the system
  24. @dark_matter88_ Y O U C A N D E P

    L O Y Y O U R M O D E L … - moving your pipeline to frontend 30 - from - as a part of the system
  25. @dark_matter88_ Y O U C A N D E P

    L O Y Y O U R M O D E L … 31 - from - as a part of the system
  26. @dark_matter88_ D E P L O Y I N G

    F R O M I S N O T R E A L LY G O O D ? 33
  27. @dark_matter88_ D E P L O Y I N G

    F R O M IMHO I S N O T R E A L LY G O O D ? 34
  28. @dark_matter88_ D E P L O Y I N G

    F R O M IMHO I S N O T R E A L LY G O O D ? 35 • Non-linear workflow
  29. @dark_matter88_ D E P L O Y I N G

    F R O M IMHO I S N O T R E A L LY G O O D ? 36 • Hard to test • Non-linear workflow
  30. @dark_matter88_ D E P L O Y I N G

    F R O M IMHO I S N O T R E A L LY G O O D ? 37 • Hard to test • Limits and complicates support • Non-linear workflow
  31. @dark_matter88_ 38 D E P L O Y I N

    G F R O M J U P Y T E R N O T E B O O K S
  32. @dark_matter88_ 39 D E P L O Y I N

    G F R O M J U P Y T E R N O T E B O O K S
  33. @dark_matter88_ D E P L O Y I N G

    F R O M J U P Y T E R N O T E B O O K S 40
  34. @dark_matter88_ D E P L O Y I N G

    F R O M J U P Y T E R N O T E B O O K S 41
  35. @dark_matter88_ D E P L O Y I N G

    F R O M J U P Y T E R N O T E B O O K S 42
  36. @dark_matter88_ D E P L O Y I N G

    F R O M J U P Y T E R N O T E B O O K S 43
  37. @dark_matter88_ 44 D E P L O Y I N

    G F R O M J U P Y T E R N O T E B O O K S
  38. @dark_matter88_ 45 D E P L O Y I N

    G F R O M J U P Y T E R N O T E B O O K S
  39. @dark_matter88_ 46 D E P L O Y I N

    G F R O M J U P Y T E R N O T E B O O K S
  40. @dark_matter88_ A P I S Y S T E M

    request response 47
  41. @dark_matter88_ C U S T O M D E P

    L O Y M E N T A P I 1 48
  42. @dark_matter88_ C U S T O M D E P

    L O Y M E N T A P I 1 2 49
  43. @dark_matter88_ C U S T O M D E P

    L O Y M E N T A P I 3 get prediction prediction 50
  44. @dark_matter88_ C U S T O M D E P

    L O Y M E N T A P I S Y S T E M request response 0 51
  45. @dark_matter88_ C U S T O M D E P

    L O Y M E N T - lightweight - more freedom in modules design - more adjustments - a lot of built-in features 53
  46. @dark_matter88_ C U S T O M D E P

    L O Y M E N T - lightweight - more freedom in modules design - more adjustments - a lot of built-in features 54
  47. @dark_matter88_ C U S T O M D E P

    L O Y M E N T - lightweight - more freedom in modules design - more adjustments - a lot of built-in features 55
  48. @dark_matter88_ C U S T O M D E P

    L O Y M E N T 57 0 Feature_1 1 Feature_2 2 Feature_3 3 Feature_4 4 Feature_5 5 Feature_6 6 Feature_7
  49. @dark_matter88_ C U S T O M D E P

    L O Y M E N T 58 0 Feature_1 1 Feature_2 2 Feature_3 3 Feature_4 4 Feature_5 5 Feature_6 6 Feature_7 model 1 model 2
  50. @dark_matter88_ M O N I T O R I N

    G & S C A L I N G 60
  51. @dark_matter88_ M O N I T O R I N

    G & S C A L I N G 61
  52. @dark_matter88_ M O N I T O R I N

    G & S C A L I N G 62
  53. @dark_matter88_ T H A N K Y O U F

    O R Y O U AT T E N T I O N 65
  54. @dark_matter88_ C O N TA C T M E marianna-diachuk

    @dark_matter88_ @mariaannadiachuk DarkMatter88 66