$30 off During Our Annual Pro Sale. View Details »
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Deep Dive - Mosaic AI の Model Training
Search
Databricks Japan
April 12, 2024
Technology
0
250
Deep Dive - Mosaic AI の Model Training
Mosaic AI の Model TrainingについてDeep Diveした資料です。
Databricks Japan
April 12, 2024
Tweet
Share
More Decks by Databricks Japan
See All by Databricks Japan
評価駆動開発で不確実性を制御する - MLflow 3が支えるエージェント開発
databricksjapan
1
82
MLflowで始めるプロンプト管理、評価、最適化
databricksjapan
1
90
JEDAI Meetup! Data + AI World Tour Tokyo 2025
databricksjapan
1
40
[2025年10月版] AI/BI 最新機能アップデート / AIBI update on Oct
databricksjapan
1
170
[2025年10月版] Databricks Data + AI Boot Camp
databricksjapan
2
510
Microsoft Tech Brief 【2025年10月最新版!】 Fabric & Databricks が導く "未来型 AI Agentic Analytics" の最新アップデートを徹底解説!
databricksjapan
1
390
動画データのポテンシャルを引き出す! Databricks と AI活用への奮闘記(現在進行形)
databricksjapan
2
280
RedshiftからDatabricksに引っ越してみたら、 想像以上に良かった話
databricksjapan
1
330
Azure SynapseからAzure Databricksへ 移行してわかった新時代のコスト問題!?
databricksjapan
1
450
Other Decks in Technology
See All in Technology
Sansanが実践する Platform EngineeringとSREの協創
sansantech
PRO
2
670
生成AI・AIエージェント時代、データサイエンティストは何をする人なのか?そして、今学生であるあなたは何を学ぶべきか?
kuri8ive
2
2.1k
[デモです] NotebookLM で作ったスライドの例
kongmingstrap
0
100
最近のLinux普段づかいWaylandデスクトップ元年
penguin2716
1
670
GitLab Duo Agent Platformで実現する“AI駆動・継続的サービス開発”と最新情報のアップデート
jeffi7
0
210
re:Invent 2025 ~何をする者であり、どこへいくのか~
tetutetu214
0
120
ブロックテーマとこれからの WordPress サイト制作 / Toyama WordPress Meetup Vol.81
torounit
0
510
Haskell を武器にして挑む競技プログラミング ─ 操作的思考から意味モデル思考へ
naoya
4
860
ML PM Talk #1 - ML PMの分類に関する考察
lycorptech_jp
PRO
1
740
re:Inventで気になったサービスを10分でいけるところまでお話しします
yama3133
1
120
AIと二人三脚で育てた、個人開発アプリグロース術
zozotech
PRO
0
690
形式手法特論:CEGAR を用いたモデル検査の状態空間削減 #kernelvm / Kernel VM Study Hokuriku Part 8
ytaka23
2
450
Featured
See All Featured
Leading Effective Engineering Teams in the AI Era
addyosmani
8
1.3k
Into the Great Unknown - MozCon
thekraken
40
2.2k
How To Stay Up To Date on Web Technology
chriscoyier
791
250k
The Invisible Side of Design
smashingmag
302
51k
Making Projects Easy
brettharned
120
6.5k
Sharpening the Axe: The Primacy of Toolmaking
bcantrill
46
2.6k
It's Worth the Effort
3n
187
29k
Easily Structure & Communicate Ideas using Wireframe
afnizarnur
194
17k
Building a Modern Day E-commerce SEO Strategy
aleyda
45
8.3k
Helping Users Find Their Own Way: Creating Modern Search Experiences
danielanewman
31
3k
How to Think Like a Performance Engineer
csswizardry
28
2.4k
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
231
22k
Transcript
Mosaic AI Model Training Deep Dive 1 February 2024
©2024 Databricks Inc. — All rights reserved 2 大規模なLLMの事前学習を どうやって実現するか?
©2024 Databricks Inc. — All rights reserved 3 1つ目:大量のデータ
©2024 Databricks Inc. — All rights reserved 4 The Stack
The Pile C4 mC4 RefinedWeb Dolma RedPajama Your Data …and so on
©2024 Databricks Inc. — All rights reserved 5 2つ目:大規模なモデル
©2024 Databricks Inc. — All rights reserved 6 MPT GPT
LLama Falcon Orca Nemo StarCoder Your Model …and so on
©2024 Databricks Inc. — All rights reserved 7 And then...
©2024 Databricks Inc. — All rights reserved 8 Until...
©2024 Databricks Inc. — All rights reserved データ • クラウドに置いたデータセットで
トレーニング • 高信頼性、高速、スケーラブル 9 高速なトレーニングを追求して開発されたソフトウェア群 The Code • LLMのPre-Training • LLMのFine Tuning • LLMの評価 トレーナー • より高速なトレーニングし • より低いコストで • より高い精度を実現する LLM Foundry Diffusion Composer Streaming
©2024 Databricks Inc. — All rights reserved 10 スケーラビリティを実現するオーケストレーションツール MCLOUD
©2024 Databricks Inc. — All rights reserved 11 スケーラビリティを実現するオーケストレーションツール 数千個のGPUで分散学習
• クラウドを跨いだ学習 • 大規模な並列化 • 数十億パラメータ 学習の失敗に自動で対処 • GPUの障害を検知 • 簡単で高速なリスタート • クラスターを跨いだリカバリ 高度な分散学習 耐障害性 10億パラメータを数分で • 開発し、学習を実行 • 複雑なセットアップや設定は不要 • 反復が容易 シームレス
©2024 Databricks Inc. — All rights reserved 12 MPT-7B MPT-7B-Instruct
MPT-7B-Chat MPT-30B MPT-30B-Chat MPT-* (上記に加え、お客様が使用する全てのLLM)
©2024 Databricks Inc. — All rights reserved 13
©2024 Databricks Inc. — All rights reserved 14 Composer モデルをより高品質に、より速く、より安くトレーニングするライブラリ
• Trainer ◦ PyTorchのトレーニングをハイパフォーマンスで実行可能で、機能豊富なAPI • 分散学習 ◦ FullyShardedDataParallel (FSDP) で自動的にラップされ、DistributedDataParallel (DDP) へのフォールバックする仕組みも具備 ◦ FSDP は ZeRO Stage 3 の実装 ▪ 大規模なモデルをスケーラブルにトレーニングするために必要 • Methods ◦ Alibi : 長いシーケンスへの対応を可能にする ◦ GradientClipping : トレーニングを安定させる • Checkpointing, ICL Evaluation, Auto-Resumption, Lora/PEFT, etc
©2024 Databricks Inc. — All rights reserved 15 Composer モデルをより高品質に、より速く、より安くトレーニングするライブラリ
• Trainer ◦ PyTorchのトレーニングをハイパフォーマンスで実行可能で、機能豊富なAPI
©2024 Databricks Inc. — All rights reserved 16
©2024 Databricks Inc. — All rights reserved • Trainer ◦
PyTorchのトレーニングをハイパフォーマンスで実行可能で、機能豊富なAPI • 分散学習 ◦ FullyShardedDataParallel (FSDP) で自動的にラップされ、DistributedDataParallel (DDP) へのフォールバックする仕組みも具備 ◦ FSDP は ZeRO Stage 3 の実装 ▪ 大規模なモデルをスケーラブルにトレーニングするために必要 17 Composer モデルをより高品質に、より速く、より安くトレーニングするライブラリ
©2024 Databricks Inc. — All rights reserved 18 Composer モデルをより高品質に、より速く、より安くトレーニングするライブラリ
• Trainer ◦ PyTorchのトレーニングをハイパフォーマンスで実行可能で、機能豊富なAPI • 分散学習 ◦ FullyShardedDataParallel (FSDP) で自動的にラップされ、DistributedDataParallel (DDP) へのフォールバックする仕組みも具備 ◦ FSDP は ZeRO Stage 3 の実装 ▪ 大規模なモデルをスケーラブルにトレーニングするために必要 • Methods ◦ Alibi : 長いシーケンスへの対応を可能にする ◦ GradientClipping : トレーニングを安定させる
©2024 Databricks Inc. — All rights reserved 19
©2024 Databricks Inc. — All rights reserved 20 Composer モデルをより高品質に、より速く、より安くトレーニングするライブラリ
• Trainer ◦ PyTorchのトレーニングをハイパフォーマンスで実行可能で、機能豊富なAPI • 分散学習 ◦ FullyShardedDataParallel (FSDP) で自動的にラップされ、DistributedDataParallel (DDP) へのフォールバックする仕組みも具備 ◦ FSDP は ZeRO Stage 3 の実装 ▪ 大規模なモデルをスケーラブルにトレーニングするために必要 • Methods ◦ Alibi : 長いシーケンスへの対応を可能にする ◦ GradientClipping : トレーニングを安定させる • Checkpointing, ICL Evaluation, Auto-Resumption, Lora/PEFT, etc
©2024 Databricks Inc. — All rights reserved 21 https://docs.mosaicml.com/ projects/composer/
©2024 Databricks Inc. — All rights reserved 22
©2024 Databricks Inc. — All rights reserved 23 Streaming クラウドストレージからデータセットを高速かつ正確にストリーミング
• クラウドストレージ ◦ OCI, Azure, GCP, AWSのクラウドストレージにデータを配置し、トレーニング環境へ オンデマンドで直接データをストリーミングで提供 • MDS ◦ Mosaic Data Shards ◦ 高速な学習とデータ転送を可能にするバイナリデータフォーマット • 決定論的なデータシャッフル ◦ 適切なデータシャッフルを決定論的に実施することは非常に難易度が高い ◦ Streaming shuffling = ロスのスパイクを無くし、決定論的シャッフルを実現 ▪ py1s, py1b, etc
©2024 Databricks Inc. — All rights reserved 24 Streaming クラウドストレージからデータセットを高速かつ正確にストリーミング
• クラウドストレージ ◦ OCI, Azure, GCP, AWSのクラウドストレージにデータを配置し、トレーニング環境へ オンデマンドで直接データをストリーミングで提供
©2024 Databricks Inc. — All rights reserved 25
©2024 Databricks Inc. — All rights reserved 26 Streaming クラウドストレージからデータセットを高速かつ正確にストリーミング
• クラウドストレージ ◦ OCI, Azure, GCP, AWSのクラウドストレージにデータを配置し、トレーニン グ環境へオンデマンドで直接データをストリーミングで提供 • MDS ◦ Mosaic Data Shards ◦ 高速な学習とデータ転送を可能にするバイナリデータフォーマット
©2024 Databricks Inc. — All rights reserved 27 MPT-30B pre-training
dataset - 10 streams - 488,894 shards - 2,000,047,734 samples (physical) - 32,784,871,217,218 bytes (decompressed)
©2024 Databricks Inc. — All rights reserved 28 Streaming クラウドストレージからデータセットを高速かつ正確にストリーミング
• クラウドストレージ ◦ OCI, Azure, GCP, AWSのクラウドストレージにデータを配置し、トレーニング環境へ オンデマンドで直接データをストリーミングで提供 • MDS ◦ Mosaic Data Shards ◦ 高速な学習とデータ転送を可能にするバイナリデータフォーマット • 決定論的なデータシャッフル ◦ 適切なデータシャッフルを決定論的に実施することは非常に難易度が高い ◦ Streaming shuffling = ロスのスパイクを無くし、決定論的シャッフルを実現 ▪ py1s, py1b, etc
©2024 Databricks Inc. — All rights reserved 29
©2024 Databricks Inc. — All rights reserved 30
©2024 Databricks Inc. — All rights reserved 31 https://docs.mosaicml.com/ projects/streaming/
©2024 Databricks Inc. — All rights reserved 32
©2024 Databricks Inc. — All rights reserved 33 LLM Foundry
• MPT ◦ モデルコード(モデルレイヤー、PretrainingとFinetuningのための dataloader、optimizer、tokenizerなどを含む) • Recipes ◦ PretrainingとFinetuningのためのプリセット構成 ◦ これらのレシピには、PretrainingとFinetuningのために吟味されたハイ パーパラメータが含まれる • Evaluation ◦ InContext Learning による評価や Gauntlet に必要な全てのコード ◦ 学習中、モデル出力からICLタスク生成させ、一連の評価ベンチマークで 実行させることができる。 LLMのトレーニング、ファインチューニング、評価のコードを含むリポジトリ
©2024 Databricks Inc. — All rights reserved 34 LLM Foundry
LLMのトレーニング、ファインチューニング、評価のコードを含むリポジトリ • MPT ◦ モデルコード(モデルレイヤー、PretrainingとFinetuningのための dataloader、optimizer、tokenizerなどを含む)
©2024 Databricks Inc. — All rights reserved 35 LLM Foundry
LLMのトレーニング、ファインチューニング、評価のコードを含むリポジトリ • MPT ◦ モデルコード(モデルレイヤー、PretrainingとFinetuningのための dataloader、optimizer、tokenizerなどを含む) • Recipes ◦ PretrainingとFinetuningのためのプリセット構成 ◦ これらのレシピには、PretrainingとFinetuningのために吟味されたハイ パーパラメータが含まれる
©2024 Databricks Inc. — All rights reserved 36
©2024 Databricks Inc. — All rights reserved 37 Why YAML?
©2024 Databricks Inc. — All rights reserved 38 Why YAML?
Many, many things to configure
©2024 Databricks Inc. — All rights reserved 39
©2024 Databricks Inc. — All rights reserved 40 LLM Foundry
LLMのトレーニング、ファインチューニング、評価のコードを含むリポジトリ • MPT ◦ モデルコード(モデルレイヤー、PretrainingとFinetuningのための dataloader、optimizer、tokenizerなどを含む) • Recipes ◦ PretrainingとFinetuningのためのプリセット構成 ◦ これらのレシピには、PretrainingとFinetuningのために吟味されたハイ パーパラメータが含まれる • Evaluation ◦ InContext Learning による評価や Gauntlet に必要な全てのコード ◦ 学習中、モデル出力からICLタスク生成させ、一連の評価ベンチマークで 実行させることができる。
©2024 Databricks Inc. — All rights reserved 41
©2024 Databricks Inc. — All rights reserved 42 https://github.com/mosaicm l/llm-foundry
©2024 Databricks Inc. — All rights reserved 43 ソフトウェアだけでなく、 トレーニングを実行する環境も提供
©2024 Databricks Inc. — All rights reserved 44 MCLOUD
©2024 Databricks Inc. — All rights reserved 45 MCloud トレーニングのオーケストレーションと実行のためのプラットフォーム
• トレーニングの実行管理 ◦ 数千個のGPUに跨る学習の実行をスケジューリング ◦ 複数のクラウド上の複数のクラスターで、トレーニング実行のスケジューリン グとデプロイを管理 • 障害の自動リカバリ ◦ GPUの障害をモニタリング ◦ 使用不能になったGPUを除外し、最新の状態から自動的にリスタート • 様々なインテグレーション・ユーティリティ ◦ プロビジョニング環境 (例:正しい WORLD_SIZE の取り込み) ◦ インテグレーション (例:Git、クラウドストレージの認証、 etc) ◦ 全てのノードからリアルタイムにログをストリーミング
©2024 Databricks Inc. — All rights reserved 46 MCloud トレーニングのオーケストレーションと実行のためのプラットフォーム
• トレーニングの実行管理 ◦ 数千個のGPUに跨る学習の実行をスケジューリング ◦ 複数のクラウド上の複数のクラスターで、トレーニング実行のスケジューリ ングとデプロイを管理
©2024 Databricks Inc. — All rights reserved 47 Our LLM
Foundry YAML MCLI YAML
©2024 Databricks Inc. — All rights reserved 48 MCloud トレーニングのオーケストレーションと実行のためのプラットフォーム
• トレーニングの実行管理 ◦ 数千個のGPUに跨る学習の実行をスケジューリング ◦ 複数のクラウド上の複数のクラスターで、トレーニング実行のスケジューリングと デプロイを管理 • 障害の自動リカバリ ◦ GPUの障害をモニタリング ◦ 使用不能になったGPUを除外し、最新の状態から自動的にリスタート
©2024 Databricks Inc. — All rights reserved 49
©2024 Databricks Inc. — All rights reserved 50 MCloud トレーニングのオーケストレーションと実行のためのプラットフォーム
• トレーニングの実行管理 ◦ 数千個のGPUに跨る学習の実行をスケジューリング ◦ 複数のクラウド上の複数のクラスターで、トレーニング実行のスケジューリン グとデプロイを管理 • 障害の自動リカバリ ◦ GPUの障害をモニタリング ◦ 使用不能になったGPUを除外し、最新の状態から自動的にリスタート • 様々なインテグレーション・ユーティリティ ◦ プロビジョニング環境 (例:正しい WORLD_SIZE の取り込み) ◦ インテグレーション (例:Git、クラウドストレージの認証、 etc) ◦ 全てのノードからリアルタイムにログをストリーミング
©2024 Databricks Inc. — All rights reserved 51 MCloud トレーニングのオーケストレーションと実行のためのプラットフォーム
• CLI → MCLI • UI → https://console.mosaicml.com/ • SDK → https://pypi.org/project/mosaicml-cli/
©2024 Databricks Inc. — All rights reserved 52 Demo https://youtu.be/QyxB_QA94U4?si=SF2iCLx0P1TtAaVG