Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Numpy, the Python foundation for number crunching
Search
Data Science London
November 12, 2012
Technology
1
5k
Numpy, the Python foundation for number crunching
Talk by Didrik Pinte, MD at Enthought at Data Science London meetup 18/10/12
Data Science London
November 12, 2012
Tweet
Share
More Decks by Data Science London
See All by Data Science London
Semi-Supervised Anomaly Detection
datasciencelondon
0
980
Hacking the Rail: Ingesting, analysing & visualising realtime streaming data
datasciencelondon
1
47k
Stateful Data-Parallel Processing
datasciencelondon
0
47k
Semantic web warmed up: Ontologies for the IoT
datasciencelondon
0
130
IoT data ingestion pipelines and Clojure transducers
datasciencelondon
0
270
TrendCalculus: A data science for trends
datasciencelondon
1
48k
Data Science in Mobile Health
datasciencelondon
1
8.3k
Large-scale Recommender Systems on Just a PC (with GraphChi)
datasciencelondon
1
17k
Taming Graph Dynamics at Scale
datasciencelondon
0
8.1k
Other Decks in Technology
See All in Technology
BigQuery Remote FunctionでLooker Studioをインタラクティブ化
cuebic9bic
2
220
原則から考える保守しやすいComposable関数設計
moriatsushi
3
500
AIにどこまで任せる?実務で使える(かもしれない)AIエージェント設計の考え方
har1101
3
1.2k
Navigation3でViewModelにデータを渡す方法
mikanichinose
0
200
JSX - 歴史を振り返り、⾯⽩がって、エモくなろう
pal4de
3
1.1k
プロダクトエンジニアリング組織への歩み、その現在地 / Our journey to becoming a product engineering organization
hiro_torii
0
100
Snowflake Summit 2025全体振り返り / Snowflake Summit 2025 Overall Review
mtpooh
2
200
Definition of Done
kawaguti
PRO
6
460
VCpp Link and Library - C++ breaktime 2025 Summer
harukasao
0
220
知識を整理して未来を作る 〜SKDとAI協業への助走〜
yosh1995
0
140
強化されたAmazon Location Serviceによる新機能と開発者体験
dayjournal
2
150
_第3回__AIxIoTビジネス共創ラボ紹介資料_20250617.pdf
iotcomjpadmin
0
140
Featured
See All Featured
Fashionably flexible responsive web design (full day workshop)
malarkey
407
66k
Building Applications with DynamoDB
mza
95
6.5k
How to Create Impact in a Changing Tech Landscape [PerfNow 2023]
tammyeverts
53
2.8k
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
31
1.2k
How STYLIGHT went responsive
nonsquared
100
5.6k
How GitHub (no longer) Works
holman
314
140k
Chrome DevTools: State of the Union 2024 - Debugging React & Beyond
addyosmani
7
700
Balancing Empowerment & Direction
lara
1
340
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
PRO
181
53k
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
137
34k
Fantastic passwords and where to find them - at NoRuKo
philnash
51
3.3k
Code Reviewing Like a Champion
maltzj
524
40k
Transcript
Numpy, the Python foundation for number crunching Didrik Pinte, Enthought
London Data Science meetup Monday 22 October 2012
Number crunching? •High-level api •Interactivity & visualization •Performance •Low-level access
Monday 22 October 2012
Evidence ? PyCuda PyTrilinos Joblib petsc4py PyAlgoTrade numpy-boost Clyther PyOpenGL
Monday 22 October 2012
Evidence ? PyCuda PyTrilinos Joblib petsc4py PyAlgoTrade numpy-boost Clyther PyOpenGL
Monday 22 October 2012
Why then? •The API ... •Simple but powerful memory model
•Open access to the data Monday 22 October 2012
Array data structure Monday 22 October 2012
Let’s look at the code! •Examples: – API / interactivity
– memory management with stride_tricks – pikos – extensions with talib –(joblib, memmap/multiprocessing, ipython //) Monday 22 October 2012
API / interactivity Monday 22 October 2012
Memory management 1 2 3 4 5 6 7 8
9 10 1 2 3 4 2 3 4 5 3 4 5 6 12 11 = 4 5 6 7 5 6 7 8 6 7 8 9 7 8 9 10 8 9 10 11 ... Monday 22 October 2012
Memory management 1 2 3 4 5 6 7 8
9 10 1 2 3 4 2 3 4 5 3 4 5 6 12 11 = Shape 12, Strides 8, Shape 9,4, Strides 8,8 4 5 6 7 5 6 7 8 6 7 8 9 7 8 9 10 8 9 10 11 ... Monday 22 October 2012
Memory management - pikos Monday 22 October 2012
Memory management - chaco Monday 22 October 2012
Low level access %timeit talib.moving_average(adj_close, optInTimePeriod=5) 100000 loops, best of
3: 7.67 us per loop %timeit as_strided(adj_close, shape=(len(adj_close)-4, 5), strides=(8, 8)).mean (axis=1) 10000 loops, best of 3: 28.2 us per loop Monday 22 October 2012
Conclusion •It’s obvious, no? Monday 22 October 2012
Q & A ? Monday 22 October 2012