Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Numpy, the Python foundation for number crunching
Search
Data Science London
November 12, 2012
Technology
1
5k
Numpy, the Python foundation for number crunching
Talk by Didrik Pinte, MD at Enthought at Data Science London meetup 18/10/12
Data Science London
November 12, 2012
Tweet
Share
More Decks by Data Science London
See All by Data Science London
Semi-Supervised Anomaly Detection
datasciencelondon
0
930
Hacking the Rail: Ingesting, analysing & visualising realtime streaming data
datasciencelondon
1
47k
Stateful Data-Parallel Processing
datasciencelondon
0
47k
Semantic web warmed up: Ontologies for the IoT
datasciencelondon
0
120
IoT data ingestion pipelines and Clojure transducers
datasciencelondon
0
260
TrendCalculus: A data science for trends
datasciencelondon
1
48k
Data Science in Mobile Health
datasciencelondon
1
8.3k
Large-scale Recommender Systems on Just a PC (with GraphChi)
datasciencelondon
1
17k
Taming Graph Dynamics at Scale
datasciencelondon
0
8.1k
Other Decks in Technology
See All in Technology
アジャイルチームがらしさを発揮するための目標づくり / Making the goal and enabling the team
kakehashi
3
110
第1回 国土交通省 データコンペ参加者向け勉強会③- Snowflake x estie編 -
estie
0
130
Exadata Database Service on Dedicated Infrastructure(ExaDB-D) UI スクリーン・キャプチャ集
oracle4engineer
PRO
2
3.2k
インフラとバックエンドとフロントエンドをくまなく調べて遅いアプリを早くした件
tubone24
1
430
Adopting Jetpack Compose in Your Existing Project - GDG DevFest Bangkok 2024
akexorcist
0
110
個人でもIAM Identity Centerを使おう!(アクセス管理編)
ryder472
4
230
DynamoDB でスロットリングが発生したとき_大盛りver/when_throttling_occurs_in_dynamodb_long
emiki
1
420
Lambdaと地方とコミュニティ
miu_crescent
2
370
複雑なState管理からの脱却
sansantech
PRO
1
150
強いチームと開発生産性
onk
PRO
35
11k
20241120_JAWS_東京_ランチタイムLT#17_AWS認定全冠の先へ
tsumita
2
300
iOSチームとAndroidチームでブランチ運用が違ったので整理してます
sansantech
PRO
0
150
Featured
See All Featured
Building a Modern Day E-commerce SEO Strategy
aleyda
38
6.9k
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
31
2.7k
Dealing with People You Can't Stand - Big Design 2015
cassininazir
364
24k
Reflections from 52 weeks, 52 projects
jeffersonlam
346
20k
Testing 201, or: Great Expectations
jmmastey
38
7.1k
Intergalactic Javascript Robots from Outer Space
tanoku
269
27k
How to Create Impact in a Changing Tech Landscape [PerfNow 2023]
tammyeverts
47
2.1k
Done Done
chrislema
181
16k
Building a Scalable Design System with Sketch
lauravandoore
459
33k
A Tale of Four Properties
chriscoyier
156
23k
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
226
22k
Fireside Chat
paigeccino
34
3k
Transcript
Numpy, the Python foundation for number crunching Didrik Pinte, Enthought
London Data Science meetup Monday 22 October 2012
Number crunching? •High-level api •Interactivity & visualization •Performance •Low-level access
Monday 22 October 2012
Evidence ? PyCuda PyTrilinos Joblib petsc4py PyAlgoTrade numpy-boost Clyther PyOpenGL
Monday 22 October 2012
Evidence ? PyCuda PyTrilinos Joblib petsc4py PyAlgoTrade numpy-boost Clyther PyOpenGL
Monday 22 October 2012
Why then? •The API ... •Simple but powerful memory model
•Open access to the data Monday 22 October 2012
Array data structure Monday 22 October 2012
Let’s look at the code! •Examples: – API / interactivity
– memory management with stride_tricks – pikos – extensions with talib –(joblib, memmap/multiprocessing, ipython //) Monday 22 October 2012
API / interactivity Monday 22 October 2012
Memory management 1 2 3 4 5 6 7 8
9 10 1 2 3 4 2 3 4 5 3 4 5 6 12 11 = 4 5 6 7 5 6 7 8 6 7 8 9 7 8 9 10 8 9 10 11 ... Monday 22 October 2012
Memory management 1 2 3 4 5 6 7 8
9 10 1 2 3 4 2 3 4 5 3 4 5 6 12 11 = Shape 12, Strides 8, Shape 9,4, Strides 8,8 4 5 6 7 5 6 7 8 6 7 8 9 7 8 9 10 8 9 10 11 ... Monday 22 October 2012
Memory management - pikos Monday 22 October 2012
Memory management - chaco Monday 22 October 2012
Low level access %timeit talib.moving_average(adj_close, optInTimePeriod=5) 100000 loops, best of
3: 7.67 us per loop %timeit as_strided(adj_close, shape=(len(adj_close)-4, 5), strides=(8, 8)).mean (axis=1) 10000 loops, best of 3: 28.2 us per loop Monday 22 October 2012
Conclusion •It’s obvious, no? Monday 22 October 2012
Q & A ? Monday 22 October 2012