Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Numpy, the Python foundation for number crunching
Search
Data Science London
November 12, 2012
Technology
1
5k
Numpy, the Python foundation for number crunching
Talk by Didrik Pinte, MD at Enthought at Data Science London meetup 18/10/12
Data Science London
November 12, 2012
Tweet
Share
More Decks by Data Science London
See All by Data Science London
Semi-Supervised Anomaly Detection
datasciencelondon
0
1.1k
Hacking the Rail: Ingesting, analysing & visualising realtime streaming data
datasciencelondon
1
47k
Stateful Data-Parallel Processing
datasciencelondon
0
47k
Semantic web warmed up: Ontologies for the IoT
datasciencelondon
0
130
IoT data ingestion pipelines and Clojure transducers
datasciencelondon
0
290
TrendCalculus: A data science for trends
datasciencelondon
1
48k
Data Science in Mobile Health
datasciencelondon
1
8.3k
Large-scale Recommender Systems on Just a PC (with GraphChi)
datasciencelondon
1
17k
Taming Graph Dynamics at Scale
datasciencelondon
0
8.1k
Other Decks in Technology
See All in Technology
We Built for Predictability; The Workloads Didn’t Care
stahnma
0
140
ファインディの横断SREがTakumi byGMOと取り組む、セキュリティと開発スピードの両立
rvirus0817
1
1.3k
プロダクト成長を支える開発基盤とスケールに伴う課題
yuu26
4
1.3k
セキュリティについて学ぶ会 / 2026 01 25 Takamatsu WordPress Meetup
rocketmartue
1
300
Codex 5.3 と Opus 4.6 にコーポレートサイトを作らせてみた / Codex 5.3 vs Opus 4.6
ama_ch
0
130
Bill One急成長の舞台裏 開発組織が直面した失敗と教訓
sansantech
PRO
2
350
CDKで始めるTypeScript開発のススメ
tsukuboshi
1
380
Bedrock PolicyでAmazon Bedrock Guardrails利用を強制してみた
yuu551
0
200
What happened to RubyGems and what can we learn?
mikemcquaid
0
280
Agile Leadership Summit Keynote 2026
m_seki
1
580
生成AIを活用した音声文字起こしシステムの2つの構築パターンについて
miu_crescent
PRO
2
180
AI駆動開発を事業のコアに置く
tasukuonizawa
1
140
Featured
See All Featured
Future Trends and Review - Lecture 12 - Web Technologies (1019888BNR)
signer
PRO
0
3.2k
GraphQLとの向き合い方2022年版
quramy
50
14k
The B2B funnel & how to create a winning content strategy
katarinadahlin
PRO
0
270
Designing for humans not robots
tammielis
254
26k
Designing Experiences People Love
moore
144
24k
AI: The stuff that nobody shows you
jnunemaker
PRO
2
250
16th Malabo Montpellier Forum Presentation
akademiya2063
PRO
0
49
SEO in 2025: How to Prepare for the Future of Search
ipullrank
3
3.3k
VelocityConf: Rendering Performance Case Studies
addyosmani
333
24k
CSS Pre-Processors: Stylus, Less & Sass
bermonpainter
359
30k
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
35
2.4k
brightonSEO & MeasureFest 2025 - Christian Goodrich - Winning strategies for Black Friday CRO & PPC
cargoodrich
3
98
Transcript
Numpy, the Python foundation for number crunching Didrik Pinte, Enthought
London Data Science meetup Monday 22 October 2012
Number crunching? •High-level api •Interactivity & visualization •Performance •Low-level access
Monday 22 October 2012
Evidence ? PyCuda PyTrilinos Joblib petsc4py PyAlgoTrade numpy-boost Clyther PyOpenGL
Monday 22 October 2012
Evidence ? PyCuda PyTrilinos Joblib petsc4py PyAlgoTrade numpy-boost Clyther PyOpenGL
Monday 22 October 2012
Why then? •The API ... •Simple but powerful memory model
•Open access to the data Monday 22 October 2012
Array data structure Monday 22 October 2012
Let’s look at the code! •Examples: – API / interactivity
– memory management with stride_tricks – pikos – extensions with talib –(joblib, memmap/multiprocessing, ipython //) Monday 22 October 2012
API / interactivity Monday 22 October 2012
Memory management 1 2 3 4 5 6 7 8
9 10 1 2 3 4 2 3 4 5 3 4 5 6 12 11 = 4 5 6 7 5 6 7 8 6 7 8 9 7 8 9 10 8 9 10 11 ... Monday 22 October 2012
Memory management 1 2 3 4 5 6 7 8
9 10 1 2 3 4 2 3 4 5 3 4 5 6 12 11 = Shape 12, Strides 8, Shape 9,4, Strides 8,8 4 5 6 7 5 6 7 8 6 7 8 9 7 8 9 10 8 9 10 11 ... Monday 22 October 2012
Memory management - pikos Monday 22 October 2012
Memory management - chaco Monday 22 October 2012
Low level access %timeit talib.moving_average(adj_close, optInTimePeriod=5) 100000 loops, best of
3: 7.67 us per loop %timeit as_strided(adj_close, shape=(len(adj_close)-4, 5), strides=(8, 8)).mean (axis=1) 10000 loops, best of 3: 28.2 us per loop Monday 22 October 2012
Conclusion •It’s obvious, no? Monday 22 October 2012
Q & A ? Monday 22 October 2012