Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Numpy, the Python foundation for number crunching
Search
Sponsored
·
SiteGround - Reliable hosting with speed, security, and support you can count on.
→
Data Science London
November 12, 2012
Technology
1
5k
Numpy, the Python foundation for number crunching
Talk by Didrik Pinte, MD at Enthought at Data Science London meetup 18/10/12
Data Science London
November 12, 2012
Tweet
Share
More Decks by Data Science London
See All by Data Science London
Semi-Supervised Anomaly Detection
datasciencelondon
0
1.1k
Hacking the Rail: Ingesting, analysing & visualising realtime streaming data
datasciencelondon
1
47k
Stateful Data-Parallel Processing
datasciencelondon
0
47k
Semantic web warmed up: Ontologies for the IoT
datasciencelondon
0
130
IoT data ingestion pipelines and Clojure transducers
datasciencelondon
0
290
TrendCalculus: A data science for trends
datasciencelondon
1
48k
Data Science in Mobile Health
datasciencelondon
1
8.3k
Large-scale Recommender Systems on Just a PC (with GraphChi)
datasciencelondon
1
17k
Taming Graph Dynamics at Scale
datasciencelondon
0
8.1k
Other Decks in Technology
See All in Technology
Agile Leadership Summit Keynote 2026
m_seki
1
580
Azure Durable Functions で作った NL2SQL Agent の精度向上に取り組んだ話/jat08
thara0402
0
170
学生・新卒・ジュニアから目指すSRE
hiroyaonoe
2
590
Amazon S3 Vectorsを使って資格勉強用AIエージェントを構築してみた
usanchuu
3
450
30万人の同時アクセスに耐えたい!新サービスの盤石なリリースを支える負荷試験 / SRE Kaigi 2026
genda
3
1.2k
超初心者からでも大丈夫!オープンソース半導体の楽しみ方〜今こそ!オレオレチップをつくろう〜
keropiyo
0
110
配列に見る bash と zsh の違い
kazzpapa3
1
130
Embedded SREの終わりを設計する 「なんとなく」から計画的な自立支援へ
sansantech
PRO
3
2.3k
AIと新時代を切り拓く。これからのSREとメルカリIBISの挑戦
0gm
0
880
モダンUIでフルサーバーレスなAIエージェントをAmplifyとCDKでサクッとデプロイしよう
minorun365
4
180
20260204_Midosuji_Tech
takuyay0ne
1
140
ブロックテーマでサイトをリニューアルした話 / 2026-01-31 Kansai WordPress Meetup
torounit
0
460
Featured
See All Featured
Building a Modern Day E-commerce SEO Strategy
aleyda
45
8.6k
技術選定の審美眼(2025年版) / Understanding the Spiral of Technologies 2025 edition
twada
PRO
117
110k
Ten Tips & Tricks for a 🌱 transition
stuffmc
0
65
Automating Front-end Workflow
addyosmani
1371
200k
Templates, Plugins, & Blocks: Oh My! Creating the theme that thinks of everything
marktimemedia
31
2.7k
Docker and Python
trallard
47
3.7k
Six Lessons from altMBA
skipperchong
29
4.1k
Deep Space Network (abreviated)
tonyrice
0
47
From Legacy to Launchpad: Building Startup-Ready Communities
dugsong
0
140
First, design no harm
axbom
PRO
2
1.1k
Test your architecture with Archunit
thirion
1
2.1k
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
333
22k
Transcript
Numpy, the Python foundation for number crunching Didrik Pinte, Enthought
London Data Science meetup Monday 22 October 2012
Number crunching? •High-level api •Interactivity & visualization •Performance •Low-level access
Monday 22 October 2012
Evidence ? PyCuda PyTrilinos Joblib petsc4py PyAlgoTrade numpy-boost Clyther PyOpenGL
Monday 22 October 2012
Evidence ? PyCuda PyTrilinos Joblib petsc4py PyAlgoTrade numpy-boost Clyther PyOpenGL
Monday 22 October 2012
Why then? •The API ... •Simple but powerful memory model
•Open access to the data Monday 22 October 2012
Array data structure Monday 22 October 2012
Let’s look at the code! •Examples: – API / interactivity
– memory management with stride_tricks – pikos – extensions with talib –(joblib, memmap/multiprocessing, ipython //) Monday 22 October 2012
API / interactivity Monday 22 October 2012
Memory management 1 2 3 4 5 6 7 8
9 10 1 2 3 4 2 3 4 5 3 4 5 6 12 11 = 4 5 6 7 5 6 7 8 6 7 8 9 7 8 9 10 8 9 10 11 ... Monday 22 October 2012
Memory management 1 2 3 4 5 6 7 8
9 10 1 2 3 4 2 3 4 5 3 4 5 6 12 11 = Shape 12, Strides 8, Shape 9,4, Strides 8,8 4 5 6 7 5 6 7 8 6 7 8 9 7 8 9 10 8 9 10 11 ... Monday 22 October 2012
Memory management - pikos Monday 22 October 2012
Memory management - chaco Monday 22 October 2012
Low level access %timeit talib.moving_average(adj_close, optInTimePeriod=5) 100000 loops, best of
3: 7.67 us per loop %timeit as_strided(adj_close, shape=(len(adj_close)-4, 5), strides=(8, 8)).mean (axis=1) 10000 loops, best of 3: 28.2 us per loop Monday 22 October 2012
Conclusion •It’s obvious, no? Monday 22 October 2012
Q & A ? Monday 22 October 2012