$30 off During Our Annual Pro Sale. View Details »
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
サブセット探索を用いた高速なkNNニューラル機械翻訳
Search
Hiroyuki Deguchi
March 22, 2024
Research
0
150
サブセット探索を用いた高速なkNNニューラル機械翻訳
第8回AAMTセミナー
AAMT若手翻訳研究会
最優秀賞
Hiroyuki Deguchi
March 22, 2024
Tweet
Share
More Decks by Hiroyuki Deguchi
See All by Hiroyuki Deguchi
20250226 NLP colloquium: "SoftMatcha: 10億単語規模コーパス検索のための柔らかくも高速なパターンマッチャー"
de9uch1
0
620
20240820: Minimum Bayes Risk Decoding for High-Quality Text Generation Beyond High-Probability Text
de9uch1
0
300
20240226_AAMT-Japio
de9uch1
0
170
Searching for Needles in a Haystack: On the Role of Incidental Bilingualism in PaLM’s Translation Capability
de9uch1
0
140
Paper Reading: Sampling-Based Approximations to Minimum Bayes Risk Decoding for Neural Machine Translation
de9uch1
0
190
My Research Environmental Setup
de9uch1
0
310
Nearest Neighbor Machine Translation
de9uch1
0
270
Paper Reading - Dynamic Programming Encoding for Subword Segmentation in Neural Machine Translation
de9uch1
0
290
paper reading - Tree Transformer
de9uch1
0
260
Other Decks in Research
See All in Research
Combining Deep Learning and Street View Imagery to Map Smallholder Crop Types
satai
3
330
AIスパコン「さくらONE」のLLM学習ベンチマークによる性能評価 / SAKURAONE LLM Training Benchmarking
yuukit
2
910
国際論文を出そう!ICRA / IROS / RA-L への論文投稿の心構えとノウハウ / RSJ2025 Luncheon Seminar
koide3
12
6.5k
An Open and Reproducible Deep Research Agent for Long-Form Question Answering
ikuyamada
0
140
"主観で終わらせない"定性データ活用 ― プロダクトディスカバリーを加速させるインサイトマネジメント / Utilizing qualitative data that "doesn't end with subjectivity" - Insight management that accelerates product discovery
kaminashi
15
17k
言語モデルの地図:確率分布と情報幾何による類似性の可視化
shimosan
8
2.3k
生成的情報検索時代におけるAI利用と認知バイアス
trycycle
PRO
0
110
論文紹介:Safety Alignment Should be Made More Than Just a Few Tokens Deep
kazutoshishinoda
0
150
AIスパコン「さくらONE」の オブザーバビリティ / Observability for AI Supercomputer SAKURAONE
yuukit
2
1k
Neural Spatial Audio Processing for Sound Field Analysis and Control
skoyamalab
0
130
離散凸解析に基づく予測付き離散最適化手法 (IBIS '25)
taihei_oki
PRO
1
630
単施設でできる臨床研究の考え方
shuntaros
0
3.3k
Featured
See All Featured
Making Projects Easy
brettharned
120
6.5k
The Pragmatic Product Professional
lauravandoore
37
7.1k
How to train your dragon (web standard)
notwaldorf
97
6.4k
Music & Morning Musume
bryan
46
7k
The innovator’s Mindset - Leading Through an Era of Exponential Change - McGill University 2025
jdejongh
PRO
1
69
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
286
14k
Automating Front-end Workflow
addyosmani
1371
200k
Technical Leadership for Architectural Decision Making
baasie
0
180
Bash Introduction
62gerente
615
210k
Bioeconomy Workshop: Dr. Julius Ecuru, Opportunities for a Bioeconomy in West Africa
akademiya2063
PRO
0
31
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
254
22k
Accessibility Awareness
sabderemane
0
24
Transcript
𝒌
◼ ⚫ ⚫ ◼ ⚫ (Zhang+, NAACL2018; Gu+, AAAI2018; Khandelwal+,
ICLR2021) ▶ (Nagao, 1984) ▶ ⚫ 𝑘 (Khandelwal+, ICLR2021) ▶ ▶ ▶ Guiding Neural Machine Translation with Retrieved Translation Pieces (Zhang+, NAACL2018) Search Engine Guided Neural Machine Translation (Gu+, AAAI2018) Nearest Neighbor Machine Translation (Khandelwal+, ICLR2021) A framework for a mechanical translation between Japanese and English by analogy principle (Nagao, 1984)
◼ ◼ ⚫ ⚫
𝒌 (Khandelwal+, ICLR2021) ◼ ⚫ ⚫ ⚫ ◼ ⚫ ▶
⚫ ▶ ≈ Nearest Neighbor Machine Translation (Khandelwal+, ICLR2021) 𝒙 𝒚
𝒌 (Khandelwal+, ICLR2021) 𝒌𝑖 ∈ ℝ𝐷 𝑓 𝒙, 𝒚<𝑡 ∈
ℝ𝐷 Nearest Neighbor Machine Translation (Khandelwal+, ICLR2021) ◼ 𝑘 ◼ ⚫ ⚫ 𝑝𝑘NN 𝑦𝑡 𝒙, 𝒚<𝑡 ∝ 𝑖=1 𝑘 𝟙𝑦𝑡=𝑣𝑖 exp − 𝒌𝑖 − 𝑓 𝒙, 𝒚<𝑡 2 2 𝜏 ◼ 𝑘
𝒌 ◼ (Martins+, EMNLP2022) ◼ (Meng+, ACLFindings2022) ⚫ 𝑘 𝑘
𝜆 = 0.5 𝑘 = 16 Chunk-based Nearest Neighbor Machine Translation (Martins+, EMNLP2022) Fast Nearest Neighbor Machine Translation (Meng+, ACL Findings2022)
𝒌 ◼ 𝑘 ◼ ⚫ 𝑘 (Matsui+, ACMMM2018) ⚫ 𝑘
𝑘 𝑘 Reconfigurable Inverted Index (Matsui+, ACMMM2018) 𝒌
◼ ⚫ 𝑘 ⚫ 𝑘 ◼ ◼ 𝑘
𝑛 𝑘 1 1 1 1 1 1 1 1
1
𝑛 𝑘 1 1 1 1 1 1 1 1
1
𝑛 𝑘 1 1 1 1 1 1 1 1
1
⚫ ⚫ ⚫ ⚫ ⚫ 𝑘 𝜆 = 0.5 𝑘
= 16 𝑛 = 56
𝑘 𝑘 ◼ 𝑘 ⚫ ▶ ⚫ ▶
◼ 𝑘 𝒌 𝒌
◼ ⚫ 𝑘
𝒌 𝒌 ◼ ⚫ ⚫ ◼ 𝑘 ⚫ ⚫ ◼
⚫
⚫ ⚫ ▶ ⚫ ▶