Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
サブセット探索を用いた高速なkNNニューラル機械翻訳
Search
Sponsored
·
Your Podcast. Everywhere. Effortlessly.
Share. Educate. Inspire. Entertain. You do you. We'll handle the rest.
→
Hiroyuki Deguchi
March 22, 2024
Research
0
160
サブセット探索を用いた高速なkNNニューラル機械翻訳
第8回AAMTセミナー
AAMT若手翻訳研究会
最優秀賞
Hiroyuki Deguchi
March 22, 2024
Tweet
Share
More Decks by Hiroyuki Deguchi
See All by Hiroyuki Deguchi
20250226 NLP colloquium: "SoftMatcha: 10億単語規模コーパス検索のための柔らかくも高速なパターンマッチャー"
de9uch1
0
650
20240820: Minimum Bayes Risk Decoding for High-Quality Text Generation Beyond High-Probability Text
de9uch1
0
310
20240226_AAMT-Japio
de9uch1
0
170
Searching for Needles in a Haystack: On the Role of Incidental Bilingualism in PaLM’s Translation Capability
de9uch1
0
150
Paper Reading: Sampling-Based Approximations to Minimum Bayes Risk Decoding for Neural Machine Translation
de9uch1
0
200
My Research Environmental Setup
de9uch1
0
320
Nearest Neighbor Machine Translation
de9uch1
0
270
Paper Reading - Dynamic Programming Encoding for Subword Segmentation in Neural Machine Translation
de9uch1
0
290
paper reading - Tree Transformer
de9uch1
0
260
Other Decks in Research
See All in Research
【NICOGRAPH2025】Photographic Conviviality: ボディペイント・ワークショップによる 同時的かつ共生的な写真体験
toremolo72
0
160
データサイエンティストの業務変化
datascientistsociety
PRO
0
220
情報技術の社会実装に向けた応用と課題:ニュースメディアの事例から / appmech-jsce 2025
upura
0
310
2026.01ウェビナー資料
elith
0
210
社内データ分析AIエージェントを できるだけ使いやすくする工夫
fufufukakaka
1
890
第二言語習得研究における 明示的・暗示的知識の再検討:この分類は何に役に立つか,何に役に立たないか
tam07pb915
0
1.1k
ACL読み会2025: Can Language Models Reason about Individualistic Human Values and Preferences?
yukizenimoto
0
120
HU Berlin: Industrial-Strength Natural Language Processing with spaCy and Prodigy
inesmontani
PRO
0
220
【SIGGRAPH Asia 2025】Lo-Fi Photograph with Lo-Fi Communication
toremolo72
0
110
SREのためのテレメトリー技術の探究 / Telemetry for SRE
yuukit
13
3k
20年前に50代だった人たちの今
hysmrk
0
140
令和最新技術で伝統掲示板を再構築: HonoX で作る型安全なスレッドフロート型掲示板 / かろっく@calloc134 - Hono Conference 2025
calloc134
0
550
Featured
See All Featured
技術選定の審美眼(2025年版) / Understanding the Spiral of Technologies 2025 edition
twada
PRO
117
110k
Fantastic passwords and where to find them - at NoRuKo
philnash
52
3.6k
Collaborative Software Design: How to facilitate domain modelling decisions
baasie
0
140
Measuring & Analyzing Core Web Vitals
bluesmoon
9
750
Breaking role norms: Why Content Design is so much more than writing copy - Taylor Woolridge
uxyall
0
170
Leveraging Curiosity to Care for An Aging Population
cassininazir
1
160
Abbi's Birthday
coloredviolet
1
4.7k
Self-Hosted WebAssembly Runtime for Runtime-Neutral Checkpoint/Restore in Edge–Cloud Continuum
chikuwait
0
330
Lightning Talk: Beautiful Slides for Beginners
inesmontani
PRO
1
440
Build The Right Thing And Hit Your Dates
maggiecrowley
38
3k
Statistics for Hackers
jakevdp
799
230k
Leveraging LLMs for student feedback in introductory data science courses - posit::conf(2025)
minecr
0
140
Transcript
𝒌
◼ ⚫ ⚫ ◼ ⚫ (Zhang+, NAACL2018; Gu+, AAAI2018; Khandelwal+,
ICLR2021) ▶ (Nagao, 1984) ▶ ⚫ 𝑘 (Khandelwal+, ICLR2021) ▶ ▶ ▶ Guiding Neural Machine Translation with Retrieved Translation Pieces (Zhang+, NAACL2018) Search Engine Guided Neural Machine Translation (Gu+, AAAI2018) Nearest Neighbor Machine Translation (Khandelwal+, ICLR2021) A framework for a mechanical translation between Japanese and English by analogy principle (Nagao, 1984)
◼ ◼ ⚫ ⚫
𝒌 (Khandelwal+, ICLR2021) ◼ ⚫ ⚫ ⚫ ◼ ⚫ ▶
⚫ ▶ ≈ Nearest Neighbor Machine Translation (Khandelwal+, ICLR2021) 𝒙 𝒚
𝒌 (Khandelwal+, ICLR2021) 𝒌𝑖 ∈ ℝ𝐷 𝑓 𝒙, 𝒚<𝑡 ∈
ℝ𝐷 Nearest Neighbor Machine Translation (Khandelwal+, ICLR2021) ◼ 𝑘 ◼ ⚫ ⚫ 𝑝𝑘NN 𝑦𝑡 𝒙, 𝒚<𝑡 ∝ 𝑖=1 𝑘 𝟙𝑦𝑡=𝑣𝑖 exp − 𝒌𝑖 − 𝑓 𝒙, 𝒚<𝑡 2 2 𝜏 ◼ 𝑘
𝒌 ◼ (Martins+, EMNLP2022) ◼ (Meng+, ACLFindings2022) ⚫ 𝑘 𝑘
𝜆 = 0.5 𝑘 = 16 Chunk-based Nearest Neighbor Machine Translation (Martins+, EMNLP2022) Fast Nearest Neighbor Machine Translation (Meng+, ACL Findings2022)
𝒌 ◼ 𝑘 ◼ ⚫ 𝑘 (Matsui+, ACMMM2018) ⚫ 𝑘
𝑘 𝑘 Reconfigurable Inverted Index (Matsui+, ACMMM2018) 𝒌
◼ ⚫ 𝑘 ⚫ 𝑘 ◼ ◼ 𝑘
𝑛 𝑘 1 1 1 1 1 1 1 1
1
𝑛 𝑘 1 1 1 1 1 1 1 1
1
𝑛 𝑘 1 1 1 1 1 1 1 1
1
⚫ ⚫ ⚫ ⚫ ⚫ 𝑘 𝜆 = 0.5 𝑘
= 16 𝑛 = 56
𝑘 𝑘 ◼ 𝑘 ⚫ ▶ ⚫ ▶
◼ 𝑘 𝒌 𝒌
◼ ⚫ 𝑘
𝒌 𝒌 ◼ ⚫ ⚫ ◼ 𝑘 ⚫ ⚫ ◼
⚫
⚫ ⚫ ▶ ⚫ ▶