Upgrade to Pro — share decks privately, control downloads, hide ads and more …

MMMモデルを推定した。で、結局どうやって予算最適化すればいいの?

 MMMモデルを推定した。で、結局どうやって予算最適化すればいいの?

More Decks by ディップ株式会社

Other Decks in Technology

Transcript

  1. チ | ム 紹 介 まだ世の中的に珍しいが、組織図上事業サイドに いるが、きちんとデータサイエンスしています 6 データサイエンス インパルス

    応答関数 自動化 示唆 意思決定の 最適化 因果推論 テキスト 分析 状態空間 モデル 項目反応理論/ 協調フィルタリン グ 決定木系 モデル ビジネス インパクト 異動後感じた 一番大きな困難
  2. 政治学と経済学の教育で学ぶ紙と鉛筆で最適化する方法 は、応用研究では早い段階で壁にぶつかります 8 1 基礎モデルからの変形 が必要 教科書的なモデルに、 工場・店舗・支店別の固 定効果・季節性などを 入れる必要がある

    2 解析的に求める時間が ない 応用研究ではスピード 感が求められる。数値 解で95点の精度が出る なら使うべき 3 解析的に求められない 場合によっては、解析 的に解を求めることが 数学的に不可能になる ケースもある 紙と 鉛 筆 の 問 題
  3. これが現代のベイズモデルの重さです 💦変分推論を使っても 数時間かかります (8 CPUで並列処理設定済み) 24 変 分 推 論

    でも 遅 い 3 次元数を推定するベイ ズword2vecモデル 8時間 (ハワイに行ける) 1 国連の投票データの次 元を推定するモデル 38分 2 テキストデータ因果推論 インド料理過程 4時間 (台湾に行ける)