Upgrade to Pro — share decks privately, control downloads, hide ads and more …

Presentation on latest science from the Dark En...

Presentation on latest science from the Dark Energy Survey

Presentation on latest science from the Dark Energy Survey, UK National Astronomical Meeting, 28th June 2016

Donnacha Kirk

June 28, 2016
Tweet

More Decks by Donnacha Kirk

Other Decks in Science

Transcript

  1. Dark Energy Survey 1 Donnacha Kirk Including work by: Yuuki

    Omori, A. Benoit-Levy, R. Cawthon, C. Chang, P. Larsen and many others SPT collaborators include: G. Holder, B.Benson, L. Bleem, K. Story DARK ENERGY SURVEY Cross-Correlation of Gravitational Lensing from DES SV, SPT and Planck
  2. Two multicolor surveys: - 300 M galaxies over 5000 deg2

    - grizY to 24th mag - 3500 supernovae (30 sq deg) THE DARK ENERGY SURVEY New camera for CTIO Blanco 4m telescope - 570 Mpixels - 3 deg2 FOV - Facility instrument Five-year Survey - 525 nights (Sept.-Feb.) - Science Verification (SV): Nov 2012-Feb 2013 Four cosmic probes - Large-scale structure - Weak Gravitational Lensing - Galaxy Clusters
  3. Two multicolor surveys: - 300 M galaxies over 5000 deg2

    - grizY to 24th mag - 3500 supernovae (30 sq deg) THE DARK ENERGY SURVEY New camera for CTIO Blanco 4m telescope - 570 Mpixels - 3 deg2 FOV - Facility instrument Five-year Survey - 525 nights (Sept.-Feb.) - Science Verification (SV): Nov 2012-Feb 2013 Four cosmic probes - Large-scale structure - Weak Gravitational Lensing - Galaxy Clusters
  4. !15 — FOOTPRINT SPT OVERLAP DES SV DATA: DARK ENERGY

    SURVEY THE DARK ENERGY SURVEY 10m CMB telescope - SPT SZ survey (2008-2011) - Tri-band (90,150,220 GHz) - Footprint 2500deg2 - Upgrade to SPT3G soon…
  5. LSS + WL: DES and SPT Large-Scale Structure (LSS) Galaxy

    number density from DES Weak Lensing (WL) Galaxy shape measurements from DES CMB Lensing (CMB-WL) Lensing measurements from SPT-SZ (and Planck 2015) Giannantonio & Fosalba et al. 2015 1507.05551 Kirk & Omori et al. 2015 1512.04535 Baxter et al. 2016 1602.07384 Kwan et al. 2016 1604.07871 Clampitt et al. 1603.05790
  6. LSS + WL: DES and SPT Weak Lensing (WL) Galaxy

    shape measurements from DES CMB Lensing (CMB-WL) Lensing measurements from SPT-SZ (and Planck 2015) Kirk & Omori et al. 2015 1512.04535
  7. Weak Lensing x CMB Lensing Cross-correlation — !9 — GALAXY

    LENSING - CMB LENSING CROSS-CORRELATION kernels matter power spectrum BACKGROUND Cϵϵ (ℓ) = C GG (ℓ) + C IG (ℓ) + C IG (ℓ) + C II ( Cij nn (ℓ) = Cij gg (ℓ) + Cij gm (ℓ) + Cji gm (ℓ) + Cij mm Cij nϵ (ℓ) = Cij gG (ℓ) + Cij gI (ℓ) + Cji mG (ℓ) + Cij mI CXY (ℓ) = dχ χ2 WX WY P(ℓ/χ, z) Wg[χ(z)] = bg (χ)n(χ) WGW L[χ(z)] = 3H2 0 Ωm 2c2 χ a(χ) χ′ χH dχ′ns(χ′) WCMBW L[χ(z)] = 3H2 0 Ωm 2c2 χ a(χ) χ∗ − χ χ∗ — !10 — GALAXY LENSING - CMB LENSING CROSS-CORRELATION kernels matter power spectrum BACKGROUND
  8. Weak Lensing x CMB Lensing Cross-correlation — !9 — GALAXY

    LENSING - CMB LENSING CROSS-CORRELATION kernels matter power spectrum BACKGROUND Cϵϵ (ℓ) = C GG (ℓ) + C IG (ℓ) + C IG (ℓ) + C II ( Cij nn (ℓ) = Cij gg (ℓ) + Cij gm (ℓ) + Cji gm (ℓ) + Cij mm Cij nϵ (ℓ) = Cij gG (ℓ) + Cij gI (ℓ) + Cji mG (ℓ) + Cij mI CXY (ℓ) = dχ χ2 WX WY P(ℓ/χ, z) Wg[χ(z)] = bg (χ)n(χ) WGW L[χ(z)] = 3H2 0 Ωm 2c2 χ a(χ) χ′ χH dχ′ns(χ′) WCMBW L[χ(z)] = 3H2 0 Ωm 2c2 χ a(χ) χ∗ − χ χ∗ Matter Power Spectrum — !10 — GALAXY LENSING - CMB LENSING CROSS-CORRELATION kernels matter power spectrum BACKGROUND
  9. Weak Lensing x CMB Lensing Cross-correlation — !9 — GALAXY

    LENSING - CMB LENSING CROSS-CORRELATION kernels matter power spectrum BACKGROUND Cϵϵ (ℓ) = C GG (ℓ) + C IG (ℓ) + C IG (ℓ) + C II ( Cij nn (ℓ) = Cij gg (ℓ) + Cij gm (ℓ) + Cji gm (ℓ) + Cij mm Cij nϵ (ℓ) = Cij gG (ℓ) + Cij gI (ℓ) + Cji mG (ℓ) + Cij mI CXY (ℓ) = dχ χ2 WX WY P(ℓ/χ, z) Wg[χ(z)] = bg (χ)n(χ) WGW L[χ(z)] = 3H2 0 Ωm 2c2 χ a(χ) χ′ χH dχ′ns(χ′) WCMBW L[χ(z)] = 3H2 0 Ωm 2c2 χ a(χ) χ∗ − χ χ∗ Matter Power Spectrum Kernels for each observable — !10 — GALAXY LENSING - CMB LENSING CROSS-CORRELATION kernels matter power spectrum BACKGROUND Gµν = 8πGTµν + Λ Gµν = 8πGTµν + Λ Cij ϵϵ (ℓ) = Cij GG (ℓ) + Cij IG (ℓ) + Cji IG (ℓ) + Cij II (ℓ) Cij nn (ℓ) = Cij gg (ℓ) + Cij gm (ℓ) + Cji gm (ℓ) + Cij mm (ℓ) Cij nϵ (ℓ) = Cij gG (ℓ) + Cij gI (ℓ) + Cji mG (ℓ) + Cij mI (ℓ) CXY (ℓ) = dχ χ2 WX WY P(ℓ/χ, z) Wg[χ(z)] = bg (χ)n(χ) WGW L[χ(z)] = 3H2 0 Ωm 2c2 χ a(χ) χ′ χH dχ′ns(χ′) χ′ − χ χ′ WCMBW L[χ(z)] = 3H2 0 Ωm 2c2 χ a(χ) χ∗ − χ χ∗
  10. Weak Lensing x CMB Lensing Cross-correlation — !9 — GALAXY

    LENSING - CMB LENSING CROSS-CORRELATION kernels matter power spectrum BACKGROUND Cϵϵ (ℓ) = C GG (ℓ) + C IG (ℓ) + C IG (ℓ) + C II ( Cij nn (ℓ) = Cij gg (ℓ) + Cij gm (ℓ) + Cji gm (ℓ) + Cij mm Cij nϵ (ℓ) = Cij gG (ℓ) + Cij gI (ℓ) + Cji mG (ℓ) + Cij mI CXY (ℓ) = dχ χ2 WX WY P(ℓ/χ, z) Wg[χ(z)] = bg (χ)n(χ) WGW L[χ(z)] = 3H2 0 Ωm 2c2 χ a(χ) χ′ χH dχ′ns(χ′) WCMBW L[χ(z)] = 3H2 0 Ωm 2c2 χ a(χ) χ∗ − χ χ∗ Matter Power Spectrum Kernels for each observable — !11 — GALAXY LENSING - CMB LENSING CROSS-CORRELATION kernels matter power spectrum BACKGROUND Gµν = 8πGTµν + Λ Gµν = 8πGTµν + Λ Cij ϵϵ (ℓ) = Cij GG (ℓ) + Cij IG (ℓ) + Cji IG (ℓ) + Cij II (ℓ) Cij nn (ℓ) = Cij gg (ℓ) + Cij gm (ℓ) + Cji gm (ℓ) + Cij mm (ℓ) Cij nϵ (ℓ) = Cij gG (ℓ) + Cij gI (ℓ) + Cji mG (ℓ) + Cij mI (ℓ) CXY (ℓ) = dχ χ2 WX WY P(ℓ/χ, z) Wg[χ(z)] = bg (χ)n(χ) WGW L[χ(z)] = 3H2 0 Ωm 2c2 χ a(χ) χ′ χH dχ′ns(χ′) χ′ − χ χ′ WCMBW L[χ(z)] = 3H2 0 Ωm 2c2 χ a(χ) χ∗ − χ χ∗
  11. Measurement of the Cross-correlation • Angular power spectrum Cl using

    PolSpice harmonic space estimator. Fix cosmology, use theory prediction to fit cross-correlation amplitude. 1992), these take the form of integrals over the non-linear matter power spectrum, P (`/ (z), z), and a pair of appro- priately chosen window functions. We are interested in the cross-correlation between GWL and CMBWL, C GWL,CMBWL (`) = Z hor 0 d (z)2 W GWL [ (z)] W CMBWL [ (z)]P ✓ ` (z) , z ◆ , (1) C GWL,CMBWL (`) = A⇥ Z hor 0 d (z)2 W GWL [ (z)] W CMBWL [ (z)]P ✓ ` (z) , z ◆ , (2) where (z) is the comoving distance to redshift z and hor is the distance to the horizon. Here W GWL and W CMBWL are the GWL and CMBWL window functions. The GWL window function, also known as the lensing e ciency function or lensing kernel, takes the form W GWL [ (z)] = 3H2 0 ⌦ m 2c2 a( ) Z hor d 0n( 0) 0 0 , (3) where H 0 is the Hubble parameter, c the speed of light, ⌦ m the total matter density and n( 0) is the galaxy redshift distribution. We have assumed a flat universe, as we will throughout the paper. The CMBWL window function takes a similar form but CROSS-CORRELATION RESULTS: GALAXY LENSING - CMB LENSING CROS
  12. CROSS-CORRELATION RESULTS: GALAXY LENSING - CMB LENSING CROS Measurement of

    the Cross-correlation Redshift Range 0 . 3 < z < 1 . 3 CMB E A 2/ d.o.f. ngmix ⇥ SPT 0 . 88+0.30 0.30 0.93 ngmix ⇥ Planck 0 . 86+0.39 0.39 1.52 Table 1. Summary of constraints on the cross-co • Angular power spectrum Cl using PolSpice harmonic space estimator. Fix cosmology, use theory prediction to fit cross-correlation amplitude. • Evidence for cross-correlation at the 3 sigma level. • DES x SPT and DES x Planck are consistent. • Measured cross-correlation is consistent with the expectation from theory using Planck 2015 cosmology. 1992), these take the form of integrals over the non-linear matter power spectrum, P (`/ (z), z), and a pair of appro- priately chosen window functions. We are interested in the cross-correlation between GWL and CMBWL, C GWL,CMBWL (`) = Z hor 0 d (z)2 W GWL [ (z)] W CMBWL [ (z)]P ✓ ` (z) , z ◆ , (1) C GWL,CMBWL (`) = A⇥ Z hor 0 d (z)2 W GWL [ (z)] W CMBWL [ (z)]P ✓ ` (z) , z ◆ , (2) where (z) is the comoving distance to redshift z and hor is the distance to the horizon. Here W GWL and W CMBWL are the GWL and CMBWL window functions. The GWL window function, also known as the lensing e ciency function or lensing kernel, takes the form W GWL [ (z)] = 3H2 0 ⌦ m 2c2 a( ) Z hor d 0n( 0) 0 0 , (3) where H 0 is the Hubble parameter, c the speed of light, ⌦ m the total matter density and n( 0) is the galaxy redshift distribution. We have assumed a flat universe, as we will throughout the paper. The CMBWL window function takes a similar form but
  13. Beyond detection: exploiting the power of cross-correlations • Calibrate systematics

    that hold back our ‘standard’ probes. e.g. intrinsic alignments, shear measurement bias, photo-z error… • Measure cosmology as part of a full, multi-probe analysis. Cross-correlations help break parameter degeneracies. CMB lensing acts like a new high-z tomographic bin. • Map massive structures in the high- redshift universe. Subtracting a DES lensing map from an SPT lensing map removes low-z structure.
  14. — FUTURE WORK FUTURE WORK Galaxy density x CMB lensing

    forecast Galaxy lensing x CMB lensing foreca Future Plans & Priorities 2016: SPT-3G ~ 15,200 detectors 100, 150, 220 GHz + Polarisation SPT-SZ 960 detectors 100, 150, 220 GHz The South Pole Telescope (SPT) 10-meter sub-mm quality wavelength telescope At 100, 150, 220 GHz, angular resolution of 1.6, 1.2, 1.0 arcmin The South Pole Telescope (SPT) •10-meter sub-mm quality wavelength telescope • At 100, 150, 220 GHz, angular resolution of 1.6, 1.2, 1.0 arcmi • Y1: 1500deg2, slightly shallower than SV. • Y5: 5000deg2 on the same timescale as the SPT-3G upgrade. • In the future we will have >30 sigma detection of this signal.