Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
.NET Day 2025: Enhancing Legal Document Analysi...
Search
.NET Day
August 29, 2025
Technology
0
19
.NET Day 2025: Enhancing Legal Document Analysis with Reflection Agents, Semantic Kernel, and Azure AI Search
.NET Day
August 29, 2025
Tweet
Share
More Decks by .NET Day
See All by .NET Day
.NET Day 2025: How to Lie with AI: Understanding Bias, Ethics, and the Hidden Risks in Machine Learning
dotnetday
0
16
.NET Day 2025: Most Expensive Design Mistakes (Ever) and how to avoid them
dotnetday
0
16
.NET Day 2025: Turbocharged: Writing High-Performance C# and .NET Code
dotnetday
0
27
.NET Day 2025: Developing ASP.NET Core Microservices with Dapr: A practical guide
dotnetday
0
21
.NET Day 2025: Future-Proof Your Blazor Apps with bUnit
dotnetday
0
13
.NET Day 2025: .NET Core Testing: pushing the limits
dotnetday
0
23
.NET Day 2025: The best ways to use the latest OpenAPI features in .NET 9!
dotnetday
0
19
.NET Day 2025: Supercharged Search with Semantic Search and Vector Embeddings
dotnetday
0
14
.NET Day 2025: Tickets to Ride: Conquering Booking Chaos with Resilient .NET Architecture
dotnetday
0
20
Other Decks in Technology
See All in Technology
AWS re:Invent 2025 を振り返る
kazzpapa3
2
110
ルネサンス開発者を育てる 1on1支援AIエージェント
yusukeshimizu
0
130
Digitization部 紹介資料
sansan33
PRO
1
6.4k
Keynoteから見るAWSの頭の中
nrinetcom
PRO
1
160
ESXi のAIOps だ!2025冬
unnowataru
0
480
_第4回__AIxIoTビジネス共創ラボ紹介資料_20251203.pdf
iotcomjpadmin
0
170
#22 CA × atmaCup 3rd 1st Place Solution
yumizu
1
130
AIエージェントを5分で一気におさらい!AIエージェント「構築」元年に備えよう
yakumo
1
140
産業的変化も組織的変化も乗り越えられるチームへの成長 〜チームの変化から見出す明るい未来〜
kakehashi
PRO
1
340
テストセンター受験、オンライン受験、どっちなんだい?
yama3133
0
200
プロンプトエンジニアリングを超えて:自由と統制のあいだでつくる Platform × Context Engineering
yuriemori
0
170
「リリースファースト」の実感を届けるには 〜停滞するチームに変化を起こすアプローチ〜 #RSGT2026
kintotechdev
0
630
Featured
See All Featured
Chasing Engaging Ingredients in Design
codingconduct
0
94
Marketing Yourself as an Engineer | Alaka | Gurzu
gurzu
0
110
Digital Ethics as a Driver of Design Innovation
axbom
PRO
0
140
How Fast Is Fast Enough? [PerfNow 2025]
tammyeverts
3
420
VelocityConf: Rendering Performance Case Studies
addyosmani
333
24k
Why Our Code Smells
bkeepers
PRO
340
58k
Information Architects: The Missing Link in Design Systems
soysaucechin
0
730
Leading Effective Engineering Teams in the AI Era
addyosmani
9
1.4k
From Legacy to Launchpad: Building Startup-Ready Communities
dugsong
0
120
A Tale of Four Properties
chriscoyier
162
23k
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
9
1.1k
What Being in a Rock Band Can Teach Us About Real World SEO
427marketing
0
160
Transcript
ENHANCING LEGAL DOCUMENT ANALYSIS WITH REFLECTION AGENTS, SEMANTIC KERNEL, AND
AZURE AI SEARCH
CÉDRIC MENDELIN Software Developer - isolutions AG
AGENDA LLM Basics Customer Project - FTA The Microsoft Way
- Azure AI Services Step-by-Step Improvements - FTA Conclusion
LLM BASICS
None
None
PROMPT History Parameters (Top-P, Temperature) System Message (Persona) Input
What is the current date?
None
None
RAG – RETRIEVAL-AUGMENTED GENERATION Search Engine Data Model User Application
RETRIEVAL STEP Is the document relevant for the query? +
=
EMBEDDINGS Source: https://weaviate.io/blog/how-to-choose-an-embedding-model
VECTOR SEARCH VECTORIZE DATA VECTORIZE QUERY VECTOR SEARCH (COSINE SIMILARITY)
FEDERAL TAX ADMINISTRATION
Federal Tax Administration 4 k
LAWS AND ORDINANCES (XML)
COURT RULING – FTA PUBLICATIONS (PDF)
CHALLENGES Wording/Style of texts Citation requirement Hierarchy in data Amount
of data
AZURE AI SERVICES
AZURE AI SERVICES OpenAI Vision Speech Language Content Safety Face
Document Intelligence Azure AI services AI Search AI Agent Service AI Model Inference AI Foundry
None
SEMANTIC KERNEL • Open-Source SDK • Middleware • Abstraction over
different Models
None
RAG – Azure OpenAI on your data Azure OpenAI Azure
AI Search
None
None
None
What is the current date?
None
None
FUNCTION CALLING
STEP-BY-STEP IMPROVEMENTS FTA
1ST ITERATION
1ST ITERATION Focus on 50 documents Index Laws per article
Index PDFs per page Azure Open AI – on your data Vector Search
AZURE OPENAI – ON YOUR DATA
1ST ITERATION – FEEDBACK Relevant documents not found Hallucination Poor
Answer Quality Other reasons
2ND ITERATION
2ND ITERATION Hybrid Search Prompting Writing Profiles (Persona) Chat Settings
HYBRID SEARCH PIPELINE Vector Search Text Search N Search Results
Derive Vector Query Derive Text Query
HYBRID SEARCH CODE
2ND ITERATION - FEEDBACK Relevant documents not found Hallucination Poor
Answer Quality Other reasons
None
We need more than a gut feeling
LLM EVALUATION
EVALUATION TYPES LLM evaluation How good the foundation models performs
on a certain task. LLM system evaluation How good the LLM performs in your specific use case, on your data, in your domain.
EVALUATION PIPELINE LLM System Evaluation Dataset Evaluators Score Input Reference
Answer Expected Doc Answer
LLM SYSTEM EVALUATION - METRICS Reference-based Reference-free LLM based
MEAI.EVALUATION OVERVIEW • Open-source • Predefined LLM-based evaluators • Interface
for custom-evaluators • Local and Azure Storage Account • In Preview
None
MEAI.EVALUATION.CONSOLE
None
EVALUATION QUESTIONS Question Reference Answer Expected Doc(s) Category
None
EVALUATION RESULTS 0 10 20 30 40 50 60 70
80 90 100 Provided source Applied source Retrieval Step - % of documents provided and applied Vector Search Hybrid Search
EVALUATION RESULTS 0.8 0.948 0.914 0.85 0.948 0.917 0.7 0.75
0.8 0.85 0.9 0.95 1 Relevance Groundedness Cosin Sim Answer Generation – Quality Metrics Vector Search Hybrid Search
3RD ITERATION
3RD ITERATION – RETRIEVAL OPTIMIZATION AI Enrichment Semantic Reranking
AI ENRICHMENT
SEMANTIC RERANKING Vector Search Text Search N Search Results Derive
Vector Query Derive Text Query Reranking
SEMANTIC RERANKING
3RD ITERATION - FEEDBACK Retrieval improved Sometimes poor Answer Quality
Other reasons
EVALUATION RESULTS 0 10 20 30 40 50 60 70
80 90 100 Provided source Applied source Retrieval Step - % of documents provided and applied Vector Search Hybrid Search Hybrid Search with Summary Hybrid Search with Reranking
EVALUATION RESULTS 0.8 0.948 0.914 0.85 0.948 0.917 0.86 0.945
0.917 0.9 0.988 0.927 0.7 0.75 0.8 0.85 0.9 0.95 1 Relevance Groundedness Cosin Sim Answer Generation – Quality Metrics Vector Search Hybrid Search Hybrid Search with Summary Hybrid Search with Reranking
4TH ITERATION
4TH ITERATION – ANSWER GENERATION OPTIMIZATION Reflection Agent
REFLECTION AGENT Writer Agent Critic Agent N Fact Checker Style
Checker Citation Checker
IMPLEMENTATION • Not supported by Azure OpenAI - On your
data • Derive Search Query • Using Azure AI Search SDK + Autogen
None
None
4TH ITERATION - FEEDBACK Other Reason
EVALUATION – EXECUTION TIME 2889 1999 2966 0 500 1000
1500 2000 2500 3000 3500 Azure OYOD - Hybrid Custom - Hybrid Multiagent (with Reranking) ms LLM system evaluation – Mean Execution Time
EVALUATION RESULTS 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1
Relevance Groundedness Cos Sim LLM System evaluation – MultiAgent Single Agent MultiAgent
LAST ITERATION
CONCLUSION
SURVEY RESULTS 86% OF ANSWERS RATED POSITIVELY 89% OF THE
USERS WANT TO USE THE SYSTEM PRODUCTIVELY
CONCLUSION • SK is your SDK of choice • Azure
AI Search for unstructured data • Use advanced capabilities • Start Evaluating early • What is your Use case • Business Value & Innovation The dotnet Stack is ready for productive AI Applications