Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Comet-сервер своими руками
Search
Dmitry Demeshchuk
October 24, 2012
Programming
7
1.2k
Comet-сервер своими руками
Мой и Макса Лапшина доклад на Highload++ 2012.
Dmitry Demeshchuk
October 24, 2012
Tweet
Share
More Decks by Dmitry Demeshchuk
See All by Dmitry Demeshchuk
Untitled.pdf
doubleyou
0
110
Other Decks in Programming
See All in Programming
Figma Dev Modeで変わる!Flutterの開発体験
watanave
0
150
AWS Lambdaから始まった Serverlessの「熱」とキャリアパス / It started with AWS Lambda Serverless “fever” and career path
seike460
PRO
1
260
Why Jakarta EE Matters to Spring - and Vice Versa
ivargrimstad
0
1.3k
受け取る人から提供する人になるということ
little_rubyist
0
250
WebフロントエンドにおけるGraphQL(あるいはバックエンドのAPI)との向き合い方 / #241106_plk_frontend
izumin5210
4
1.4k
.NET のための通信フレームワーク MagicOnion 入門 / Introduction to MagicOnion
mayuki
1
1.8k
ふかぼれ!CSSセレクターモジュール / Fukabore! CSS Selectors Module
petamoriken
0
150
Make Impossible States Impossibleを 意識してReactのPropsを設計しよう
ikumatadokoro
0
290
Amazon Bedrock Agentsを用いてアプリ開発してみた!
har1101
0
340
Jakarta EE meets AI
ivargrimstad
0
700
「今のプロジェクトいろいろ大変なんですよ、app/services とかもあって……」/After Kaigi on Rails 2024 LT Night
junk0612
5
2.2k
[Do iOS '24] Ship your app on a Friday...and enjoy your weekend!
polpielladev
0
110
Featured
See All Featured
Docker and Python
trallard
40
3.1k
ピンチをチャンスに:未来をつくるプロダクトロードマップ #pmconf2020
aki_iinuma
109
49k
Templates, Plugins, & Blocks: Oh My! Creating the theme that thinks of everything
marktimemedia
26
2.1k
What's new in Ruby 2.0
geeforr
343
31k
Designing Dashboards & Data Visualisations in Web Apps
destraynor
229
52k
Designing on Purpose - Digital PM Summit 2013
jponch
115
7k
Building Flexible Design Systems
yeseniaperezcruz
327
38k
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
28
2k
Principles of Awesome APIs and How to Build Them.
keavy
126
17k
Become a Pro
speakerdeck
PRO
25
5k
How to train your dragon (web standard)
notwaldorf
88
5.7k
The Art of Delivering Value - GDevCon NA Keynote
reverentgeek
8
900
Transcript
Comet-сервер своими руками Макс Лапшин Дмитрий Демещук
Эволюция веба
Никакого real-time
Немного real-time
Сплошной real-time
После загрузки, современная страница продолжает жить своей жизнью.
Данные поступают по инициативе сервера
Возможные реализации • Периодические запросы на сервер • Comet: •
Long polling • Websockets • Server Sent Events • Прочее гуано (Flash sockets)
• Много запросов впустую • Постоянная загрузка • Задержки Периодические
запросы
• Не требует немедленного ответа • Совместим с keepalive •
Моментальное обновление • Много одновременных подключений • Требуется переподключение Long-polling
• Постоянное соединение • Намного быстрее, чем HTTP • Не
везде поддерживаются • Еще не устоялись как стандарт
Выбор очевиден:* * часто в сочетании с таймером
• Ruby EventMachine • Python Twisted • Node.JS • Erlang
“Стойте, я же могу просто сделать это на чистом PHP!”
None
• CGI - ~1000-2000 • Apache - 1000-5000 • Node.JS
- 1000000 (?) • Erlang - 2277845 Лимит одновременных подключений
None
Хранение внутреннего состояния • MySQL — надежно и очень медленно
• Redis/memcached — ненадежно и медленно • Внутри VM — быстро и опасно • Репликация
Внутреннее состояние хочется реплицировать
Почти всегда нужна доставка сообщений
А еще, очень хочется failover
Нет решений для распределенного комета из коробки • Redis -
master-slave репликация • Memcached - нет сообщений • Postgres - медленно и без репликации
RabbitMQ • Возможность хранения истории • Возможность использования вебсокетов •
Нет long polling из коробки
Все приходится делать самим
Нельзя просто так взять и написать распределенный comet-сервер Нельзя просто
так взять и написать распределенный comet-сервер
Почему Erlang • Феноменальная для веба производительность • Феноменальная для
веба многоядерность • Распределенность из коробки • Асинхронный IO в последовательном виде • Изоляция данных • Горячее обновление кода
DPS - distributed pub/sub https://github.com/doubleyou/dps
Желаемые фичи • In-memory • История сообщений в канале •
Горячий бэкап нод • Zero-conf, no-ops сервер
Хроника событий 1. Реализация pub/sub-механизма 2. Написание тестов 3. Прикручивание
веб-сервера 4. Доработка напильником 5. Бенчмарки 6. ... 7. PROFIT!
• Распределенный • Автоматический failover • Написан за 2.5 часа
• Меньше 300 строк кода • Один race condition • Один баг-опечатка Первый рабочий pub/sub
dps:subscribe("Channel"). dps:publish("Channel", “Message”).
Тесты • Выявили race condition • Очень помогли в дальнейшей
разработке • Отняли несколько часов • Покрыли примерно 80% кода pub/sub-части • По размеру сравнимы с кодом
Comet добавляется за час http://levgem.livejournal.com/409755.html
Прикрутили чатик на JS. Попутно оказалось, что кроссдоменный long-poll не
работает в Safari.
Все круто, все работает.
Спасибо за внимание!
И тут пришли они Бенчмарки
Попытка №0: подозрительно хорошие результаты
Мы просто слали сообщения 300 000 publishes per second
Вывод: бенчмарки должны соответствовать продакшну
Разные профили нагрузки • Whatsapp: 2M online, 12k pps •
Ejabberd: 40k online, 40k pps
Попытка №1 • Amazon EC2 large instances • 1000 клиентских
подключений • 1 rps с каждого клиента
На этот раз, бенчмарк-процессы работают приближенно к живым клиентам
• 20-140% CPU на одной машине • 2000 deliveries per
second Мы посовещались и решили, что Amazon не очень
Структура на одной ноде
Репликация между нодами
• Асинхронная репликация • Messages discarding • Replication dropping Sacrificial
degradation
Асинхронный publish на соседние ноды облегчил ситуацию, но не решил
проблему.
10 000 deliveries per second с асинхронной репликацией, работает
20 000 deliveries per second - через некоторое время обсыпается
с timeout
Интроспекция в Erlang как она есть
Все дело в очередях
Низкое время ответа может быть вредно
Long polling рассчитан на редкие ответы с сервера. У нас
же он превратился в short-polling.
Выходы* • Таймаут на клиенте • Таймаут на сервере •
Пользовательские сессии * лучше - в комбинации
Сессии - почти те же каналы
7500 publishes per second 150 000 deliveries per second
200 000 deliveries per second обсыпается с timeout
• Клиент шлет сообщение в полную очередь • Отваливается с
таймаутом • Перепосылает в ещё более полную очередь • OOM Killer In Da House Замкнутый круг
Вывод: надо тщательно продумывать rate limit control
• Перед публикацией проверяем длину очередей • Если большая, шлем
HTTP 429 • Клиент сам перепошлет завтра позже Power of Erlang
Итого
Сервер написан и протестирован за несколько человеко-дней
Неплохая производительность: WhatsApp - ~11500 pps DPS - ~7500 pps
Функциональность и железо разные, но порядок цифр похожий.
Важные моменты • Не следует хранить всю историю в памяти
• Следите, какие процессы перегружаются • Избегайте избыточных сообщений • Не делайте запросы слишком часто • Используйте пользовательские сессии • Старайтесь не гонять лишние данные
Erlang - не серебряная пуля, но позволяет фокусироваться на более
высокоуровневых задачах
Тесты и бенчмарки с лихвой окупили себя.
Что дальше? • DHT Ring для распределения каналов • Персистентность
• Регулировка consistency/availability
Технические компромиссы могут заметно ускорить работу сервера. • Не хранить
очереди • Терять сообщения • Отказаться от сессий (в некоторых случаях) • Посылать все в /dev/null
Вопросы? Макс Лапшин
[email protected]
Дмитрий Демещук
[email protected]