Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Building a real time analytics engine in JRuby
Search
Sponsored
·
SiteGround - Reliable hosting with speed, security, and support you can count on.
→
David Dahl
March 02, 2013
Programming
1
530
Building a real time analytics engine in JRuby
David Dahl
March 02, 2013
Tweet
Share
More Decks by David Dahl
See All by David Dahl
Nosql - getting over the bad parts
effata
1
120
Other Decks in Programming
See All in Programming
【卒業研究】会話ログ分析によるユーザーごとの関心に応じた話題提案手法
momok47
0
200
dchart: charts from deck markup
ajstarks
3
990
Spinner 軸ズレ現象を調べたらレンダリング深淵に飲まれた #レバテックMeetup
bengo4com
1
230
The Past, Present, and Future of Enterprise Java
ivargrimstad
0
560
20260127_試行錯誤の結晶を1冊に。著者が解説 先輩データサイエンティストからの指南書 / author's_commentary_ds_instructions_guide
nash_efp
1
960
Architectural Extensions
denyspoltorak
0
280
15年続くIoTサービスのSREエンジニアが挑む分散トレーシング導入
melonps
2
200
AI時代の認知負荷との向き合い方
optfit
0
160
HTTPプロトコル正しく理解していますか? 〜かわいい猫と共に学ぼう。ฅ^•ω•^ฅ ニャ〜
hekuchan
2
690
Oxlintはいいぞ
yug1224
5
1.3k
CSC307 Lecture 04
javiergs
PRO
0
660
AIと一緒にレガシーに向き合ってみた
nyafunta9858
0
230
Featured
See All Featured
The Impact of AI in SEO - AI Overviews June 2024 Edition
aleyda
5
730
Redefining SEO in the New Era of Traffic Generation
szymonslowik
1
210
Digital Projects Gone Horribly Wrong (And the UX Pros Who Still Save the Day) - Dean Schuster
uxyall
0
340
Mind Mapping
helmedeiros
PRO
0
81
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
9
1.2k
Skip the Path - Find Your Career Trail
mkilby
0
54
The browser strikes back
jonoalderson
0
370
Imperfection Machines: The Place of Print at Facebook
scottboms
269
14k
Building a Scalable Design System with Sketch
lauravandoore
463
34k
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
21
1.4k
Odyssey Design
rkendrick25
PRO
1
490
Writing Fast Ruby
sferik
630
62k
Transcript
Building a real time analytics engine in JRuby David Dahl
@effata
whoami ‣ Senior developer at Burt ‣ Analytics for online
advertising ‣ Ruby lovers since 2009 ‣ AWS
None
None
None
Getting started ‣ Writing everything to mysql, querying for every
report - Broke down on first major campaign ‣ Precalculate all the things! ‣ Every operation in one application - Extremely scary to deploy ‣ Still sticking to MRI
None
Stuck ‣ Separate and buffer with RabbitMQ - Eventmachine ‣
Store stuff with MongoDB - Blocking operations ‣ Bad things
Java? ‣ Threading ‣ “Enterprise” ‣ Lots of libraries Think
about creating something Java ecosystem Discover someone has made it for you already Profit!
Moving to JRuby ‣ Threads! ‣ A real GC ‣
JIT ‣ Every Java, Scala, Ruby lib ever made ‣ Wrapping java libraries is fun! ‣ Bonus: Not hating yourself
Challenges
“100%” uptime ‣ We can “never” be down! ‣ But
we can pause ‣ Don’t want to fail on errors ‣ But it’s ok to die
Buffering ‣ Split into isolated services ‣ Add a buffering
pipeline between - We LOVE RabbitMQ ‣ Ack and persist in a “transaction” ‣ Figure out if you want - at most once - at least once
Databases ‣ Pick the right tool for the job ‣
MongoDB everywhere = bad ‣ Cassandra ‣ Redis ‣ NoDB - keep it streaming!
Java.util.concurrent
Shortcut
Executors Better than doing Thread.new
thread_pool = ! Executors.new_fixed_thread_pool(16) stuff.each do |item| thread_pool.submit do crunch_stuff(item)
end end
Blocking queues Producer/consumer pattern made easy Don’t forget back pressure!
queue = ! JavaConcurrent::LinkedBlockingQueue.new # With timeout queue.offer(data, 60, Java::TimeUnit::SECONDS)
queue.poll(60, Java::TimeUnit::SECONDS) # Blocking queue.put(data) queue.take
Back pressure Storage Timer Data processing Queue State
queue = ! JavaConcurrent::ArrayBlockingQueue.new(100) # With timeout queue.offer(data, 60, Java::TimeUnit::SECONDS)
queue.poll(60, Java::TimeUnit::SECONDS) # Blocking queue.put(data) queue.take
More awesomeness ‣ Java.util.concurrent - Atomic(Boolean/Integer/Long) - ConcurrentHashMap - CountDownLatch
/ Semaphore ‣ Google Guava ‣ LMAX Disruptor
Easy mode ‣ Thread safety is hard ‣ Use j.u.c
‣ Avoid shared mutual state if possible ‣ Back pressure
Actors Another layer of abstractions
Akka Concurrency library in Scala Most famous for its actor
implementation
Mikka Small ruby wrapper around Akka
class SomeActor < Mikka::Actor def receive(message) # do the thing
end end
Storm github.com/colinsurprenant/redstorm
We broke it But YOU should definitely try it out!
Hadoop github.com/iconara/rubydoop
module WordCount class Mapper def map(key, value, context) # ...
end end class Reducer def reduce(key, value, context) # ... end end end
Rubydoop.configure do |input_path, output_path| job 'word_count' do input input_path output
output_path mapper WordCount::Mapper reducer WordCount::Reducer output_key Hadoop::Io::Text output_value Hadoop::Io::IntWritable end end
Other cool stuff ‣ Hotbunnies ‣ Eurydice ‣ Bundesstrasse ‣
Multimeter
Thank you @effata
[email protected]