$30 off During Our Annual Pro Sale. View Details »
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Building a real time analytics engine in JRuby
Search
David Dahl
March 02, 2013
Programming
1
520
Building a real time analytics engine in JRuby
David Dahl
March 02, 2013
Tweet
Share
More Decks by David Dahl
See All by David Dahl
Nosql - getting over the bad parts
effata
1
120
Other Decks in Programming
See All in Programming
SwiftUIで本格音ゲー実装してみた
hypebeans
0
420
ローカルLLMを⽤いてコード補完を⾏う VSCode拡張機能を作ってみた
nearme_tech
PRO
0
110
実はマルチモーダルだった。ブラウザの組み込みAI🧠でWebの未来を感じてみよう #jsfes #gemini
n0bisuke2
3
1.2k
Github Copilotのチャット履歴ビューワーを作りました~WPF、dotnet10もあるよ~ #clrh111
katsuyuzu
0
110
The Past, Present, and Future of Enterprise Java
ivargrimstad
0
160
非同期処理の迷宮を抜ける: 初学者がつまづく構造的な原因
pd1xx
1
730
AI 駆動開発ライフサイクル(AI-DLC):ソフトウェアエンジニアリングの再構築 / AI-DLC Introduction
kanamasa
3
150
DevFest Android in Korea 2025 - 개발자 커뮤니티를 통해 얻는 가치
wisemuji
0
150
20 years of Symfony, what's next?
fabpot
2
370
AIの誤りが許されない業務システムにおいて“信頼されるAI” を目指す / building-trusted-ai-systems
yuya4
6
3.7k
複数人でのCLI/Infrastructure as Codeの暮らしを良くする
shmokmt
5
2.3k
認証・認可の基本を学ぼう前編
kouyuume
0
250
Featured
See All Featured
[RailsConf 2023] Rails as a piece of cake
palkan
58
6.2k
Fireside Chat
paigeccino
41
3.7k
Understanding Cognitive Biases in Performance Measurement
bluesmoon
32
2.8k
Measuring & Analyzing Core Web Vitals
bluesmoon
9
710
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
35
2.3k
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
25
1.6k
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
47
7.9k
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
12
1.3k
Optimizing for Happiness
mojombo
379
70k
For a Future-Friendly Web
brad_frost
180
10k
Rails Girls Zürich Keynote
gr2m
95
14k
How to Ace a Technical Interview
jacobian
281
24k
Transcript
Building a real time analytics engine in JRuby David Dahl
@effata
whoami ‣ Senior developer at Burt ‣ Analytics for online
advertising ‣ Ruby lovers since 2009 ‣ AWS
None
None
None
Getting started ‣ Writing everything to mysql, querying for every
report - Broke down on first major campaign ‣ Precalculate all the things! ‣ Every operation in one application - Extremely scary to deploy ‣ Still sticking to MRI
None
Stuck ‣ Separate and buffer with RabbitMQ - Eventmachine ‣
Store stuff with MongoDB - Blocking operations ‣ Bad things
Java? ‣ Threading ‣ “Enterprise” ‣ Lots of libraries Think
about creating something Java ecosystem Discover someone has made it for you already Profit!
Moving to JRuby ‣ Threads! ‣ A real GC ‣
JIT ‣ Every Java, Scala, Ruby lib ever made ‣ Wrapping java libraries is fun! ‣ Bonus: Not hating yourself
Challenges
“100%” uptime ‣ We can “never” be down! ‣ But
we can pause ‣ Don’t want to fail on errors ‣ But it’s ok to die
Buffering ‣ Split into isolated services ‣ Add a buffering
pipeline between - We LOVE RabbitMQ ‣ Ack and persist in a “transaction” ‣ Figure out if you want - at most once - at least once
Databases ‣ Pick the right tool for the job ‣
MongoDB everywhere = bad ‣ Cassandra ‣ Redis ‣ NoDB - keep it streaming!
Java.util.concurrent
Shortcut
Executors Better than doing Thread.new
thread_pool = ! Executors.new_fixed_thread_pool(16) stuff.each do |item| thread_pool.submit do crunch_stuff(item)
end end
Blocking queues Producer/consumer pattern made easy Don’t forget back pressure!
queue = ! JavaConcurrent::LinkedBlockingQueue.new # With timeout queue.offer(data, 60, Java::TimeUnit::SECONDS)
queue.poll(60, Java::TimeUnit::SECONDS) # Blocking queue.put(data) queue.take
Back pressure Storage Timer Data processing Queue State
queue = ! JavaConcurrent::ArrayBlockingQueue.new(100) # With timeout queue.offer(data, 60, Java::TimeUnit::SECONDS)
queue.poll(60, Java::TimeUnit::SECONDS) # Blocking queue.put(data) queue.take
More awesomeness ‣ Java.util.concurrent - Atomic(Boolean/Integer/Long) - ConcurrentHashMap - CountDownLatch
/ Semaphore ‣ Google Guava ‣ LMAX Disruptor
Easy mode ‣ Thread safety is hard ‣ Use j.u.c
‣ Avoid shared mutual state if possible ‣ Back pressure
Actors Another layer of abstractions
Akka Concurrency library in Scala Most famous for its actor
implementation
Mikka Small ruby wrapper around Akka
class SomeActor < Mikka::Actor def receive(message) # do the thing
end end
Storm github.com/colinsurprenant/redstorm
We broke it But YOU should definitely try it out!
Hadoop github.com/iconara/rubydoop
module WordCount class Mapper def map(key, value, context) # ...
end end class Reducer def reduce(key, value, context) # ... end end end
Rubydoop.configure do |input_path, output_path| job 'word_count' do input input_path output
output_path mapper WordCount::Mapper reducer WordCount::Reducer output_key Hadoop::Io::Text output_value Hadoop::Io::IntWritable end end
Other cool stuff ‣ Hotbunnies ‣ Eurydice ‣ Bundesstrasse ‣
Multimeter
Thank you @effata
[email protected]