Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Domo Arigato, Mr. Roboto: Machine Learning with...
Search
Eric Weinstein
November 10, 2016
Technology
1
1.5k
Domo Arigato, Mr. Roboto: Machine Learning with Ruby
Slides for my RubyConf 2016 talk on machine learning.
Eric Weinstein
November 10, 2016
Tweet
Share
More Decks by Eric Weinstein
See All by Eric Weinstein
Interview Them Where They Are
ericqweinstein
0
150
Value Your Types!
ericqweinstein
0
110
Being Good: An Introduction to Robo- and Machine Ethics
ericqweinstein
1
2k
What If...?: Ruby 3
ericqweinstein
1
230
Infinite State Machine
ericqweinstein
1
150
Do Androids Dream of Electronic Dance Music?
ericqweinstein
1
120
Machine Learning with Elixir and Phoenix
ericqweinstein
1
980
Machine Learning with Clojure and Apache Spark
ericqweinstein
1
440
A Nil Device, A Lonely Operator, and a Voyage to the Void Star
ericqweinstein
1
1k
Other Decks in Technology
See All in Technology
SRE Enabling戦記 - 急成長する組織にSREを浸透させる戦いの歴史
markie1009
0
130
[CV勉強会@関東 World Model 読み会] Orbis: Overcoming Challenges of Long-Horizon Prediction in Driving World Models (Mousakhan+, NeurIPS 2025)
abemii
0
140
~Everything as Codeを諦めない~ 後からCDK
mu7889yoon
3
420
生成AIを活用した音声文字起こしシステムの2つの構築パターンについて
miu_crescent
PRO
2
210
SREじゃなかった僕らがenablingを通じて「SRE実践者」になるまでのリアル / SRE Kaigi 2026
aeonpeople
6
2.5k
OCI Database Management サービス詳細
oracle4engineer
PRO
1
7.4k
AWS Network Firewall Proxyを触ってみた
nagisa53
1
240
M&A 後の統合をどう進めるか ─ ナレッジワーク × Poetics が実践した組織とシステムの融合
kworkdev
PRO
1
470
プロダクト成長を支える開発基盤とスケールに伴う課題
yuu26
4
1.3k
今日から始めるAmazon Bedrock AgentCore
har1101
4
410
インフラエンジニア必見!Kubernetesを用いたクラウドネイティブ設計ポイント大全
daitak
1
370
CDKで始めるTypeScript開発のススメ
tsukuboshi
1
470
Featured
See All Featured
Learning to Love Humans: Emotional Interface Design
aarron
275
41k
Easily Structure & Communicate Ideas using Wireframe
afnizarnur
194
17k
We Are The Robots
honzajavorek
0
160
Conquering PDFs: document understanding beyond plain text
inesmontani
PRO
4
2.3k
Believing is Seeing
oripsolob
1
56
Leo the Paperboy
mayatellez
4
1.4k
The Limits of Empathy - UXLibs8
cassininazir
1
220
Odyssey Design
rkendrick25
PRO
1
500
brightonSEO & MeasureFest 2025 - Christian Goodrich - Winning strategies for Black Friday CRO & PPC
cargoodrich
3
100
The SEO identity crisis: Don't let AI make you average
varn
0
290
Navigating Weather and Climate Data
rabernat
0
110
Rails Girls Zürich Keynote
gr2m
96
14k
Transcript
Dōmo arigatō, Mr. Roboto: Machine Learning with Ruby # Eric
Weinstein # RubyConf 2016 # Cincinnati, Ohio # 10 November 2016
for Joshua
Part 0: Hello!
About Me eric_weinstein = { employer: 'Hulu', github: 'ericqweinstein', twitter:
'ericqweinstein', website: 'ericweinste.in' } 30% off with RUBYCONF30!
Agenda • What is machine learning? • What is supervised
learning? • What’s a neural network? • Machine learning with Ruby and the MNIST dataset
Part 1: Machine Learning
None
What’s machine learning?
In a word:
Generalization
What’s Supervised Learning? Classification or regression, generalizing from labeled data
to unlabeled data
Features && Labels • Raw pixel features (vectors of intensities)
• Digit (0..9)
Features && Labels • Raw pixel features (vectors of intensities)
• Digit (0..9)
Image credit: https://www.tensorflow.org/versions/r0.9/tutorials/mnist/ beginners/index.html
What’s a neural network?
Image credit: https://github.com/cdipaolo/goml/tree/master/perceptron
Image credit: https://en.wikipedia.org/wiki/Artificial_neural_network
Part 2: The MNIST Dataset
Our Data • Images of handwritten digits, size-normalized and centered
• Training: 60,000 examples, test: 10,000 • http://yann.lecun.com/exdb/mnist/
Image credit: https://www.researchgate.net/
How’d We Do? • Correct: 9328 / 10_000 • Incorrect:
672 / 10_000 • Overall: 93.28% accuracy
Developing the App
Front End submit() { fetch('/submit', { method: 'POST', body: this.state.canvas.toDataURL('image/png')
}).then(response => { return response.json(); }).then(j => { this.setState({ prediction: j.prediction }); }); }
Front End render() { return( <div> <EditableCanvas canvas={this.state.canvas} ctx={this.state.ctx} ref='editableCanvas'
/> <Prediction number={this.state.prediction} /> <div> <Button onClick={this.submit} value='Submit' /> <Button onClick={this.clear} value='Clear' /> </div> </div> ); }
Back End train = RubyFann::TrainData.new(inputs: features, desired_outputs: labels) fann =
RubyFann::Standard.new(num_inputs: 576, hidden_neurons: [300], num_outputs: 10) fann.train_on_data(train, 1000, 10, 0.01)
STOP #demotime
Summary • Machine learning is generalization • Supervised learning is
labeled data -> unlabeled data • Neural networks are awesome • You can do all this with Ruby!
Takeaways (TL;DPA) • We can do machine learning with Ruby
• Contribute to tools like Ruby FANN (github.com/tangledpath/ruby-fann) and sciruby (http://sciruby.com/) • Check it out: http://ruby-mnist.herokuapp.com/ • PRs welcome! github.com/ericqweinstein/ruby- mnist
Thank You!
Questions? eric_weinstein = { employer: 'Hulu', github: 'ericqweinstein', twitter: 'ericqweinstein',
website: 'ericweinste.in' } 30% off with RUBYCONF30!