Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Domo Arigato, Mr. Roboto: Machine Learning with...
Search
Eric Weinstein
November 10, 2016
Technology
1
1.5k
Domo Arigato, Mr. Roboto: Machine Learning with Ruby
Slides for my RubyConf 2016 talk on machine learning.
Eric Weinstein
November 10, 2016
Tweet
Share
More Decks by Eric Weinstein
See All by Eric Weinstein
Interview Them Where They Are
ericqweinstein
0
110
Value Your Types!
ericqweinstein
0
84
Being Good: An Introduction to Robo- and Machine Ethics
ericqweinstein
1
1.8k
What If...?: Ruby 3
ericqweinstein
1
200
Infinite State Machine
ericqweinstein
1
110
Do Androids Dream of Electronic Dance Music?
ericqweinstein
1
95
Machine Learning with Elixir and Phoenix
ericqweinstein
1
940
Machine Learning with Clojure and Apache Spark
ericqweinstein
1
390
A Nil Device, A Lonely Operator, and a Voyage to the Void Star
ericqweinstein
1
960
Other Decks in Technology
See All in Technology
これならできる!Kotlin・Spring・DDDを活用したAll in oneのマイクロサービス開発術
demaecan
0
260
Monorepo Error Management: Automated Runbooks and Team-Targeted Alert Distribution
biwashi
1
140
「規約、知識、オペレーション」から考える中規模以上の開発組織のCursorルールの 考え方・育て方 / Cursor Rules for Coding Styles, Domain Knowledges and Operations
yuitosato
4
690
産業機械をElixirで制御する
kikuyuta
0
130
Introduction to Sansan for Engineers / エンジニア向け会社紹介
sansan33
PRO
5
38k
AWS と定理証明 〜ポリシー言語 Cedar 開発の舞台裏〜 #fp_matsuri / FP Matsuri 2025
ytaka23
8
2.2k
実践Kafka Streams 〜イベント駆動型アーキテクチャを添えて〜
joker1007
3
860
Tenstorrent HW/SW 概要説明
tenstorrent_japan
0
360
CSSの最新トレンド Ver.2025
tonkotsuboy_com
11
4.4k
Introduction to Sansan Meishi Maker Development Engineer
sansan33
PRO
0
270
Oracle Cloud Infrastructureデータベース・クラウド:各バージョンのサポート期間
oracle4engineer
PRO
48
33k
OpenTelemetry Collector internals
ymotongpoo
5
500
Featured
See All Featured
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
10
890
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
106
19k
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
507
140k
Large-scale JavaScript Application Architecture
addyosmani
512
110k
GitHub's CSS Performance
jonrohan
1031
460k
Learning to Love Humans: Emotional Interface Design
aarron
273
40k
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
16
910
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
46
9.6k
Fashionably flexible responsive web design (full day workshop)
malarkey
407
66k
Art, The Web, and Tiny UX
lynnandtonic
299
21k
Designing for humans not robots
tammielis
253
25k
ピンチをチャンスに:未来をつくるプロダクトロードマップ #pmconf2020
aki_iinuma
123
52k
Transcript
Dōmo arigatō, Mr. Roboto: Machine Learning with Ruby # Eric
Weinstein # RubyConf 2016 # Cincinnati, Ohio # 10 November 2016
for Joshua
Part 0: Hello!
About Me eric_weinstein = { employer: 'Hulu', github: 'ericqweinstein', twitter:
'ericqweinstein', website: 'ericweinste.in' } 30% off with RUBYCONF30!
Agenda • What is machine learning? • What is supervised
learning? • What’s a neural network? • Machine learning with Ruby and the MNIST dataset
Part 1: Machine Learning
None
What’s machine learning?
In a word:
Generalization
What’s Supervised Learning? Classification or regression, generalizing from labeled data
to unlabeled data
Features && Labels • Raw pixel features (vectors of intensities)
• Digit (0..9)
Features && Labels • Raw pixel features (vectors of intensities)
• Digit (0..9)
Image credit: https://www.tensorflow.org/versions/r0.9/tutorials/mnist/ beginners/index.html
What’s a neural network?
Image credit: https://github.com/cdipaolo/goml/tree/master/perceptron
Image credit: https://en.wikipedia.org/wiki/Artificial_neural_network
Part 2: The MNIST Dataset
Our Data • Images of handwritten digits, size-normalized and centered
• Training: 60,000 examples, test: 10,000 • http://yann.lecun.com/exdb/mnist/
Image credit: https://www.researchgate.net/
How’d We Do? • Correct: 9328 / 10_000 • Incorrect:
672 / 10_000 • Overall: 93.28% accuracy
Developing the App
Front End submit() { fetch('/submit', { method: 'POST', body: this.state.canvas.toDataURL('image/png')
}).then(response => { return response.json(); }).then(j => { this.setState({ prediction: j.prediction }); }); }
Front End render() { return( <div> <EditableCanvas canvas={this.state.canvas} ctx={this.state.ctx} ref='editableCanvas'
/> <Prediction number={this.state.prediction} /> <div> <Button onClick={this.submit} value='Submit' /> <Button onClick={this.clear} value='Clear' /> </div> </div> ); }
Back End train = RubyFann::TrainData.new(inputs: features, desired_outputs: labels) fann =
RubyFann::Standard.new(num_inputs: 576, hidden_neurons: [300], num_outputs: 10) fann.train_on_data(train, 1000, 10, 0.01)
STOP #demotime
Summary • Machine learning is generalization • Supervised learning is
labeled data -> unlabeled data • Neural networks are awesome • You can do all this with Ruby!
Takeaways (TL;DPA) • We can do machine learning with Ruby
• Contribute to tools like Ruby FANN (github.com/tangledpath/ruby-fann) and sciruby (http://sciruby.com/) • Check it out: http://ruby-mnist.herokuapp.com/ • PRs welcome! github.com/ericqweinstein/ruby- mnist
Thank You!
Questions? eric_weinstein = { employer: 'Hulu', github: 'ericqweinstein', twitter: 'ericqweinstein',
website: 'ericweinste.in' } 30% off with RUBYCONF30!