Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Domo Arigato, Mr. Roboto: Machine Learning with...
Search
Eric Weinstein
November 10, 2016
Technology
1
1.4k
Domo Arigato, Mr. Roboto: Machine Learning with Ruby
Slides for my RubyConf 2016 talk on machine learning.
Eric Weinstein
November 10, 2016
Tweet
Share
More Decks by Eric Weinstein
See All by Eric Weinstein
Interview Them Where They Are
ericqweinstein
0
110
Value Your Types!
ericqweinstein
0
72
Being Good: An Introduction to Robo- and Machine Ethics
ericqweinstein
1
1.8k
What If...?: Ruby 3
ericqweinstein
1
190
Infinite State Machine
ericqweinstein
1
110
Do Androids Dream of Electronic Dance Music?
ericqweinstein
1
89
Machine Learning with Elixir and Phoenix
ericqweinstein
1
910
Machine Learning with Clojure and Apache Spark
ericqweinstein
1
370
A Nil Device, A Lonely Operator, and a Voyage to the Void Star
ericqweinstein
1
930
Other Decks in Technology
See All in Technology
Go の analysis パッケージで自作するリファクタリングツール
kworkdev
PRO
1
270
AIは脅威でなくチャンス。 AIと共に進化するエンジニアの成長戦略 / geeksai-2025-spring
carta_engineering
0
450
Engineering Managementのグローバルトレンド #emoasis / Engineering Management Global Trend
kyonmm
PRO
4
860
Dapr For Java Developers SouJava 25
salaboy
0
100
KCD Brazil '25: Enabling Developers with Dapr & Backstage
salaboy
0
100
日本MySQLユーザ会ができるまで / making MyNA
tmtms
1
140
移行できそうでやりきれなかった 10年超えのシステムを葬るための戦略 / phper-kaigi-2025-ryu
carta_engineering
0
660
パスキーでのログインを 実装してみよう!
hibiki_cube
0
490
大人の学び - マイクの持ち方について
kawaguti
PRO
3
680
30代エンジニアが考える、エンジニア生存戦略~~セキュリティを添えて~~
masakiokuda
4
1.9k
一人QA時代が終わり、 QAチームが立ち上がった話
ma_cho29
0
200
AWS のポリシー言語 Cedar を活用した高速かつスケーラブルな認可技術の探求 #phperkaigi / PHPerKaigi 2025
ytaka23
7
1.3k
Featured
See All Featured
How to Think Like a Performance Engineer
csswizardry
22
1.4k
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
28
9.3k
The Art of Delivering Value - GDevCon NA Keynote
reverentgeek
12
1.4k
4 Signs Your Business is Dying
shpigford
183
22k
How to Create Impact in a Changing Tech Landscape [PerfNow 2023]
tammyeverts
50
2.3k
The Myth of the Modular Monolith - Day 2 Keynote - Rails World 2024
eileencodes
22
2.6k
The World Runs on Bad Software
bkeepers
PRO
67
11k
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
101
18k
Gamification - CAS2011
davidbonilla
80
5.2k
Code Reviewing Like a Champion
maltzj
521
39k
Building Your Own Lightsaber
phodgson
104
6.3k
A Philosophy of Restraint
colly
203
16k
Transcript
Dōmo arigatō, Mr. Roboto: Machine Learning with Ruby # Eric
Weinstein # RubyConf 2016 # Cincinnati, Ohio # 10 November 2016
for Joshua
Part 0: Hello!
About Me eric_weinstein = { employer: 'Hulu', github: 'ericqweinstein', twitter:
'ericqweinstein', website: 'ericweinste.in' } 30% off with RUBYCONF30!
Agenda • What is machine learning? • What is supervised
learning? • What’s a neural network? • Machine learning with Ruby and the MNIST dataset
Part 1: Machine Learning
None
What’s machine learning?
In a word:
Generalization
What’s Supervised Learning? Classification or regression, generalizing from labeled data
to unlabeled data
Features && Labels • Raw pixel features (vectors of intensities)
• Digit (0..9)
Features && Labels • Raw pixel features (vectors of intensities)
• Digit (0..9)
Image credit: https://www.tensorflow.org/versions/r0.9/tutorials/mnist/ beginners/index.html
What’s a neural network?
Image credit: https://github.com/cdipaolo/goml/tree/master/perceptron
Image credit: https://en.wikipedia.org/wiki/Artificial_neural_network
Part 2: The MNIST Dataset
Our Data • Images of handwritten digits, size-normalized and centered
• Training: 60,000 examples, test: 10,000 • http://yann.lecun.com/exdb/mnist/
Image credit: https://www.researchgate.net/
How’d We Do? • Correct: 9328 / 10_000 • Incorrect:
672 / 10_000 • Overall: 93.28% accuracy
Developing the App
Front End submit() { fetch('/submit', { method: 'POST', body: this.state.canvas.toDataURL('image/png')
}).then(response => { return response.json(); }).then(j => { this.setState({ prediction: j.prediction }); }); }
Front End render() { return( <div> <EditableCanvas canvas={this.state.canvas} ctx={this.state.ctx} ref='editableCanvas'
/> <Prediction number={this.state.prediction} /> <div> <Button onClick={this.submit} value='Submit' /> <Button onClick={this.clear} value='Clear' /> </div> </div> ); }
Back End train = RubyFann::TrainData.new(inputs: features, desired_outputs: labels) fann =
RubyFann::Standard.new(num_inputs: 576, hidden_neurons: [300], num_outputs: 10) fann.train_on_data(train, 1000, 10, 0.01)
STOP #demotime
Summary • Machine learning is generalization • Supervised learning is
labeled data -> unlabeled data • Neural networks are awesome • You can do all this with Ruby!
Takeaways (TL;DPA) • We can do machine learning with Ruby
• Contribute to tools like Ruby FANN (github.com/tangledpath/ruby-fann) and sciruby (http://sciruby.com/) • Check it out: http://ruby-mnist.herokuapp.com/ • PRs welcome! github.com/ericqweinstein/ruby- mnist
Thank You!
Questions? eric_weinstein = { employer: 'Hulu', github: 'ericqweinstein', twitter: 'ericqweinstein',
website: 'ericweinste.in' } 30% off with RUBYCONF30!