Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Domo Arigato, Mr. Roboto: Machine Learning with...
Search
Eric Weinstein
November 10, 2016
Technology
1
1.5k
Domo Arigato, Mr. Roboto: Machine Learning with Ruby
Slides for my RubyConf 2016 talk on machine learning.
Eric Weinstein
November 10, 2016
Tweet
Share
More Decks by Eric Weinstein
See All by Eric Weinstein
Interview Them Where They Are
ericqweinstein
0
110
Value Your Types!
ericqweinstein
0
85
Being Good: An Introduction to Robo- and Machine Ethics
ericqweinstein
1
1.8k
What If...?: Ruby 3
ericqweinstein
1
200
Infinite State Machine
ericqweinstein
1
120
Do Androids Dream of Electronic Dance Music?
ericqweinstein
1
96
Machine Learning with Elixir and Phoenix
ericqweinstein
1
940
Machine Learning with Clojure and Apache Spark
ericqweinstein
1
400
A Nil Device, A Lonely Operator, and a Voyage to the Void Star
ericqweinstein
1
970
Other Decks in Technology
See All in Technology
mrubyと micro-ROSが繋ぐロボットの世界
kishima
2
360
【5分でわかる】セーフィー エンジニア向け会社紹介
safie_recruit
0
26k
プロダクトエンジニアリング組織への歩み、その現在地 / Our journey to becoming a product engineering organization
hiro_torii
0
130
MySQL5.6から8.4へ 戦いの記録
kyoshidaxx
1
270
なぜ私はいま、ここにいるのか? #もがく中堅デザイナー #プロダクトデザイナー
bengo4com
0
1.2k
「良さそう」と「とても良い」の間には 「良さそうだがホンマか」がたくさんある / 2025.07.01 LLM品質Night
smiyawaki0820
1
390
ドメイン特化なCLIPモデルとデータセットの紹介
tattaka
1
220
How Community Opened Global Doors
hiroramos4
PRO
1
130
Node-REDのFunctionノードでMCPサーバーの実装を試してみた / Node-RED × MCP 勉強会 vol.1
you
PRO
0
120
Should Our Project Join the CNCF? (Japanese Recap)
whywaita
PRO
0
260
怖くない!はじめてのClaude Code
shinya337
0
220
2025-06-26 GitHub CopilotとAI駆動開発:実践と導入のリアル
fl_kawachi
1
170
Featured
See All Featured
Into the Great Unknown - MozCon
thekraken
39
1.9k
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
130
19k
Typedesign – Prime Four
hannesfritz
42
2.7k
Building an army of robots
kneath
306
45k
The Art of Programming - Codeland 2020
erikaheidi
54
13k
Designing Experiences People Love
moore
142
24k
Rails Girls Zürich Keynote
gr2m
94
14k
YesSQL, Process and Tooling at Scale
rocio
173
14k
KATA
mclloyd
30
14k
The Invisible Side of Design
smashingmag
300
51k
How to Think Like a Performance Engineer
csswizardry
24
1.7k
Bootstrapping a Software Product
garrettdimon
PRO
307
110k
Transcript
Dōmo arigatō, Mr. Roboto: Machine Learning with Ruby # Eric
Weinstein # RubyConf 2016 # Cincinnati, Ohio # 10 November 2016
for Joshua
Part 0: Hello!
About Me eric_weinstein = { employer: 'Hulu', github: 'ericqweinstein', twitter:
'ericqweinstein', website: 'ericweinste.in' } 30% off with RUBYCONF30!
Agenda • What is machine learning? • What is supervised
learning? • What’s a neural network? • Machine learning with Ruby and the MNIST dataset
Part 1: Machine Learning
None
What’s machine learning?
In a word:
Generalization
What’s Supervised Learning? Classification or regression, generalizing from labeled data
to unlabeled data
Features && Labels • Raw pixel features (vectors of intensities)
• Digit (0..9)
Features && Labels • Raw pixel features (vectors of intensities)
• Digit (0..9)
Image credit: https://www.tensorflow.org/versions/r0.9/tutorials/mnist/ beginners/index.html
What’s a neural network?
Image credit: https://github.com/cdipaolo/goml/tree/master/perceptron
Image credit: https://en.wikipedia.org/wiki/Artificial_neural_network
Part 2: The MNIST Dataset
Our Data • Images of handwritten digits, size-normalized and centered
• Training: 60,000 examples, test: 10,000 • http://yann.lecun.com/exdb/mnist/
Image credit: https://www.researchgate.net/
How’d We Do? • Correct: 9328 / 10_000 • Incorrect:
672 / 10_000 • Overall: 93.28% accuracy
Developing the App
Front End submit() { fetch('/submit', { method: 'POST', body: this.state.canvas.toDataURL('image/png')
}).then(response => { return response.json(); }).then(j => { this.setState({ prediction: j.prediction }); }); }
Front End render() { return( <div> <EditableCanvas canvas={this.state.canvas} ctx={this.state.ctx} ref='editableCanvas'
/> <Prediction number={this.state.prediction} /> <div> <Button onClick={this.submit} value='Submit' /> <Button onClick={this.clear} value='Clear' /> </div> </div> ); }
Back End train = RubyFann::TrainData.new(inputs: features, desired_outputs: labels) fann =
RubyFann::Standard.new(num_inputs: 576, hidden_neurons: [300], num_outputs: 10) fann.train_on_data(train, 1000, 10, 0.01)
STOP #demotime
Summary • Machine learning is generalization • Supervised learning is
labeled data -> unlabeled data • Neural networks are awesome • You can do all this with Ruby!
Takeaways (TL;DPA) • We can do machine learning with Ruby
• Contribute to tools like Ruby FANN (github.com/tangledpath/ruby-fann) and sciruby (http://sciruby.com/) • Check it out: http://ruby-mnist.herokuapp.com/ • PRs welcome! github.com/ericqweinstein/ruby- mnist
Thank You!
Questions? eric_weinstein = { employer: 'Hulu', github: 'ericqweinstein', twitter: 'ericqweinstein',
website: 'ericweinste.in' } 30% off with RUBYCONF30!