Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Domo Arigato, Mr. Roboto: Machine Learning with...
Search
Eric Weinstein
November 10, 2016
Technology
1
1.5k
Domo Arigato, Mr. Roboto: Machine Learning with Ruby
Slides for my RubyConf 2016 talk on machine learning.
Eric Weinstein
November 10, 2016
Tweet
Share
More Decks by Eric Weinstein
See All by Eric Weinstein
Interview Them Where They Are
ericqweinstein
0
130
Value Your Types!
ericqweinstein
0
96
Being Good: An Introduction to Robo- and Machine Ethics
ericqweinstein
1
1.9k
What If...?: Ruby 3
ericqweinstein
1
210
Infinite State Machine
ericqweinstein
1
130
Do Androids Dream of Electronic Dance Music?
ericqweinstein
1
110
Machine Learning with Elixir and Phoenix
ericqweinstein
1
960
Machine Learning with Clojure and Apache Spark
ericqweinstein
1
410
A Nil Device, A Lonely Operator, and a Voyage to the Void Star
ericqweinstein
1
1k
Other Decks in Technology
See All in Technology
書籍『実践 Apache Iceberg』の歩き方
ishikawa_satoru
0
430
サブドメインテイクオーバー事例紹介と対策について
mikit
11
3.5k
今から間に合う re:Invent 準備グッズと現地の地図、その他ラスベガスを周る際の Tips/reinvent-preparation-guide
emiki
1
230
Open Table Format (OTF) が必要になった背景とその機能 (2025.10.28)
simosako
3
600
ソースを読む時の思考プロセスの例-MkDocs
sat
PRO
1
360
JAWS UG AI/ML #32 Amazon BedrockモデルのライフサイクルとEOL対応/How Amazon Bedrock Model Lifecycle Works
quiver
1
650
短期間でRAGシステムを実現 お客様と歩んだ生成AI内製化への道のり
taka0709
1
150
知覚とデザイン
rinchoku
1
720
AIとの協業で実現!レガシーコードをKotlinらしく生まれ変わらせる実践ガイド
zozotech
PRO
2
260
累計5000万DLサービスの裏側 – LINEマンガのKotlinで挑む大規模 Server-side ETLの最適化
ldf_tech
0
130
進化する大規模言語モデル評価: Swallowプロジェクトにおける実践と知見
chokkan
PRO
3
440
20251029_Cursor Meetup Tokyo #02_MK_「あなたのAI、私のシェル」 - プロンプトインジェクションによるエージェントのハイジャック
mk0721
PRO
6
2.3k
Featured
See All Featured
4 Signs Your Business is Dying
shpigford
186
22k
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
333
22k
Connecting the Dots Between Site Speed, User Experience & Your Business [WebExpo 2025]
tammyeverts
10
640
The Psychology of Web Performance [Beyond Tellerrand 2023]
tammyeverts
49
3.1k
Building Applications with DynamoDB
mza
96
6.7k
Scaling GitHub
holman
463
140k
Visualization
eitanlees
150
16k
The MySQL Ecosystem @ GitHub 2015
samlambert
251
13k
Why You Should Never Use an ORM
jnunemaker
PRO
60
9.6k
Large-scale JavaScript Application Architecture
addyosmani
514
110k
Java REST API Framework Comparison - PWX 2021
mraible
34
8.9k
A Modern Web Designer's Workflow
chriscoyier
697
190k
Transcript
Dōmo arigatō, Mr. Roboto: Machine Learning with Ruby # Eric
Weinstein # RubyConf 2016 # Cincinnati, Ohio # 10 November 2016
for Joshua
Part 0: Hello!
About Me eric_weinstein = { employer: 'Hulu', github: 'ericqweinstein', twitter:
'ericqweinstein', website: 'ericweinste.in' } 30% off with RUBYCONF30!
Agenda • What is machine learning? • What is supervised
learning? • What’s a neural network? • Machine learning with Ruby and the MNIST dataset
Part 1: Machine Learning
None
What’s machine learning?
In a word:
Generalization
What’s Supervised Learning? Classification or regression, generalizing from labeled data
to unlabeled data
Features && Labels • Raw pixel features (vectors of intensities)
• Digit (0..9)
Features && Labels • Raw pixel features (vectors of intensities)
• Digit (0..9)
Image credit: https://www.tensorflow.org/versions/r0.9/tutorials/mnist/ beginners/index.html
What’s a neural network?
Image credit: https://github.com/cdipaolo/goml/tree/master/perceptron
Image credit: https://en.wikipedia.org/wiki/Artificial_neural_network
Part 2: The MNIST Dataset
Our Data • Images of handwritten digits, size-normalized and centered
• Training: 60,000 examples, test: 10,000 • http://yann.lecun.com/exdb/mnist/
Image credit: https://www.researchgate.net/
How’d We Do? • Correct: 9328 / 10_000 • Incorrect:
672 / 10_000 • Overall: 93.28% accuracy
Developing the App
Front End submit() { fetch('/submit', { method: 'POST', body: this.state.canvas.toDataURL('image/png')
}).then(response => { return response.json(); }).then(j => { this.setState({ prediction: j.prediction }); }); }
Front End render() { return( <div> <EditableCanvas canvas={this.state.canvas} ctx={this.state.ctx} ref='editableCanvas'
/> <Prediction number={this.state.prediction} /> <div> <Button onClick={this.submit} value='Submit' /> <Button onClick={this.clear} value='Clear' /> </div> </div> ); }
Back End train = RubyFann::TrainData.new(inputs: features, desired_outputs: labels) fann =
RubyFann::Standard.new(num_inputs: 576, hidden_neurons: [300], num_outputs: 10) fann.train_on_data(train, 1000, 10, 0.01)
STOP #demotime
Summary • Machine learning is generalization • Supervised learning is
labeled data -> unlabeled data • Neural networks are awesome • You can do all this with Ruby!
Takeaways (TL;DPA) • We can do machine learning with Ruby
• Contribute to tools like Ruby FANN (github.com/tangledpath/ruby-fann) and sciruby (http://sciruby.com/) • Check it out: http://ruby-mnist.herokuapp.com/ • PRs welcome! github.com/ericqweinstein/ruby- mnist
Thank You!
Questions? eric_weinstein = { employer: 'Hulu', github: 'ericqweinstein', twitter: 'ericqweinstein',
website: 'ericweinste.in' } 30% off with RUBYCONF30!