Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Domo Arigato, Mr. Roboto: Machine Learning with...
Search
Eric Weinstein
November 10, 2016
Technology
1
1.5k
Domo Arigato, Mr. Roboto: Machine Learning with Ruby
Slides for my RubyConf 2016 talk on machine learning.
Eric Weinstein
November 10, 2016
Tweet
Share
More Decks by Eric Weinstein
See All by Eric Weinstein
Interview Them Where They Are
ericqweinstein
0
140
Value Your Types!
ericqweinstein
0
100
Being Good: An Introduction to Robo- and Machine Ethics
ericqweinstein
1
1.9k
What If...?: Ruby 3
ericqweinstein
1
220
Infinite State Machine
ericqweinstein
1
140
Do Androids Dream of Electronic Dance Music?
ericqweinstein
1
120
Machine Learning with Elixir and Phoenix
ericqweinstein
1
970
Machine Learning with Clojure and Apache Spark
ericqweinstein
1
430
A Nil Device, A Lonely Operator, and a Voyage to the Void Star
ericqweinstein
1
1k
Other Decks in Technology
See All in Technology
ペアーズにおけるAIエージェント 基盤とText to SQLツールの紹介
hisamouna
2
1.9k
「駆動」って言葉、なんかカッコイイ_Mitz
comucal
PRO
0
120
「もしもデータ基盤開発で『強くてニューゲーム』ができたなら今の僕はどんなデータ基盤を作っただろう」
aeonpeople
0
260
Keynoteから見るAWSの頭の中
nrinetcom
PRO
1
110
M&Aで拡大し続けるGENDAのデータ活用を促すためのDatabricks権限管理 / AEON TECH HUB #22
genda
0
290
戰略轉變:從建構 AI 代理人到發展可擴展的技能生態系統
appleboy
0
160
Building Serverless AI Memory with Mastra × AWS
vvatanabe
1
760
re:Invent2025 セッションレポ ~Spec-driven development with Kiro~
nrinetcom
PRO
1
120
20251222_サンフランシスコサバイバル術
ponponmikankan
2
150
アラフォーおじさん、はじめてre:Inventに行く / A 40-Something Guy’s First re:Invent Adventure
kaminashi
0
180
AR Guitar: Expanding Guitar Performance from a Live House to Urban Space
ekito_station
0
270
Agent Skillsがハーネスの垣根を超える日
gotalab555
6
4.7k
Featured
See All Featured
Amusing Abliteration
ianozsvald
0
76
Agile Actions for Facilitating Distributed Teams - ADO2019
mkilby
0
98
[SF Ruby Conf 2025] Rails X
palkan
0
650
AI Search: Implications for SEO and How to Move Forward - #ShenzhenSEOConference
aleyda
1
1k
The untapped power of vector embeddings
frankvandijk
1
1.5k
Lightning talk: Run Django tests with GitHub Actions
sabderemane
0
94
Design of three-dimensional binary manipulators for pick-and-place task avoiding obstacles (IECON2024)
konakalab
0
320
Bash Introduction
62gerente
615
210k
Future Trends and Review - Lecture 12 - Web Technologies (1019888BNR)
signer
PRO
0
3.1k
How to build a perfect <img>
jonoalderson
0
4.8k
Art, The Web, and Tiny UX
lynnandtonic
304
21k
Site-Speed That Sticks
csswizardry
13
1k
Transcript
Dōmo arigatō, Mr. Roboto: Machine Learning with Ruby # Eric
Weinstein # RubyConf 2016 # Cincinnati, Ohio # 10 November 2016
for Joshua
Part 0: Hello!
About Me eric_weinstein = { employer: 'Hulu', github: 'ericqweinstein', twitter:
'ericqweinstein', website: 'ericweinste.in' } 30% off with RUBYCONF30!
Agenda • What is machine learning? • What is supervised
learning? • What’s a neural network? • Machine learning with Ruby and the MNIST dataset
Part 1: Machine Learning
None
What’s machine learning?
In a word:
Generalization
What’s Supervised Learning? Classification or regression, generalizing from labeled data
to unlabeled data
Features && Labels • Raw pixel features (vectors of intensities)
• Digit (0..9)
Features && Labels • Raw pixel features (vectors of intensities)
• Digit (0..9)
Image credit: https://www.tensorflow.org/versions/r0.9/tutorials/mnist/ beginners/index.html
What’s a neural network?
Image credit: https://github.com/cdipaolo/goml/tree/master/perceptron
Image credit: https://en.wikipedia.org/wiki/Artificial_neural_network
Part 2: The MNIST Dataset
Our Data • Images of handwritten digits, size-normalized and centered
• Training: 60,000 examples, test: 10,000 • http://yann.lecun.com/exdb/mnist/
Image credit: https://www.researchgate.net/
How’d We Do? • Correct: 9328 / 10_000 • Incorrect:
672 / 10_000 • Overall: 93.28% accuracy
Developing the App
Front End submit() { fetch('/submit', { method: 'POST', body: this.state.canvas.toDataURL('image/png')
}).then(response => { return response.json(); }).then(j => { this.setState({ prediction: j.prediction }); }); }
Front End render() { return( <div> <EditableCanvas canvas={this.state.canvas} ctx={this.state.ctx} ref='editableCanvas'
/> <Prediction number={this.state.prediction} /> <div> <Button onClick={this.submit} value='Submit' /> <Button onClick={this.clear} value='Clear' /> </div> </div> ); }
Back End train = RubyFann::TrainData.new(inputs: features, desired_outputs: labels) fann =
RubyFann::Standard.new(num_inputs: 576, hidden_neurons: [300], num_outputs: 10) fann.train_on_data(train, 1000, 10, 0.01)
STOP #demotime
Summary • Machine learning is generalization • Supervised learning is
labeled data -> unlabeled data • Neural networks are awesome • You can do all this with Ruby!
Takeaways (TL;DPA) • We can do machine learning with Ruby
• Contribute to tools like Ruby FANN (github.com/tangledpath/ruby-fann) and sciruby (http://sciruby.com/) • Check it out: http://ruby-mnist.herokuapp.com/ • PRs welcome! github.com/ericqweinstein/ruby- mnist
Thank You!
Questions? eric_weinstein = { employer: 'Hulu', github: 'ericqweinstein', twitter: 'ericqweinstein',
website: 'ericweinste.in' } 30% off with RUBYCONF30!