Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Domo Arigato, Mr. Roboto: Machine Learning with...
Search
Eric Weinstein
November 10, 2016
Technology
1
1.5k
Domo Arigato, Mr. Roboto: Machine Learning with Ruby
Slides for my RubyConf 2016 talk on machine learning.
Eric Weinstein
November 10, 2016
Tweet
Share
More Decks by Eric Weinstein
See All by Eric Weinstein
Interview Them Where They Are
ericqweinstein
0
120
Value Your Types!
ericqweinstein
0
87
Being Good: An Introduction to Robo- and Machine Ethics
ericqweinstein
1
1.9k
What If...?: Ruby 3
ericqweinstein
1
210
Infinite State Machine
ericqweinstein
1
120
Do Androids Dream of Electronic Dance Music?
ericqweinstein
1
100
Machine Learning with Elixir and Phoenix
ericqweinstein
1
950
Machine Learning with Clojure and Apache Spark
ericqweinstein
1
410
A Nil Device, A Lonely Operator, and a Voyage to the Void Star
ericqweinstein
1
980
Other Decks in Technology
See All in Technology
「魔法少女まどか☆マギカ Magia Exedra」のグローバル展開を支える、開発チームと翻訳チームの「意識しない協創」を実現するローカライズシステム
gree_tech
PRO
0
350
ヘブンバーンズレッドのレンダリングパイプライン刷新
gree_tech
PRO
0
360
コスト削減の基本の「キ」~ コスト消費3大リソースへの対策 ~
smt7174
2
290
ここ一年のCCoEとしてのAWSコスト最適化を振り返る / CCoE AWS Cost Optimization devio2025
masahirokawahara
1
870
AI時代にPdMとPMMはどう連携すべきか / PdM–PMM-collaboration-in-AI-era
rakus_dev
0
190
Figma + Storybook + PlaywrightのMCPを使ったフロントエンド開発
yug1224
10
3.4k
【 LLMエンジニアがヒューマノイド開発に挑んでみた 】 - 第104回 Machine Learning 15minutes! Hybrid
soneo1127
0
210
ヘブンバーンズレッドにおける、世界観を活かしたミニゲーム企画の作り方
gree_tech
PRO
0
350
実践AIガバナンス
asei
3
250
Kiroと学ぶコンテキストエンジニアリング
oikon48
4
820
「守る」から「進化させる」セキュリティへ ~AWS re:Inforce 2025参加報告~ / AWS re:Inforce 2025 Participation Report
yuj1osm
1
180
Oracle Cloud Infrastructure:2025年8月度サービス・アップデート
oracle4engineer
PRO
0
150
Featured
See All Featured
Building Flexible Design Systems
yeseniaperezcruz
328
39k
Building a Scalable Design System with Sketch
lauravandoore
462
33k
How GitHub (no longer) Works
holman
315
140k
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
284
13k
Measuring & Analyzing Core Web Vitals
bluesmoon
9
570
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
33
2.4k
Music & Morning Musume
bryan
46
6.8k
Practical Orchestrator
shlominoach
190
11k
Building an army of robots
kneath
306
46k
[RailsConf 2023] Rails as a piece of cake
palkan
56
5.8k
No one is an island. Learnings from fostering a developers community.
thoeni
21
3.4k
Raft: Consensus for Rubyists
vanstee
140
7.1k
Transcript
Dōmo arigatō, Mr. Roboto: Machine Learning with Ruby # Eric
Weinstein # RubyConf 2016 # Cincinnati, Ohio # 10 November 2016
for Joshua
Part 0: Hello!
About Me eric_weinstein = { employer: 'Hulu', github: 'ericqweinstein', twitter:
'ericqweinstein', website: 'ericweinste.in' } 30% off with RUBYCONF30!
Agenda • What is machine learning? • What is supervised
learning? • What’s a neural network? • Machine learning with Ruby and the MNIST dataset
Part 1: Machine Learning
None
What’s machine learning?
In a word:
Generalization
What’s Supervised Learning? Classification or regression, generalizing from labeled data
to unlabeled data
Features && Labels • Raw pixel features (vectors of intensities)
• Digit (0..9)
Features && Labels • Raw pixel features (vectors of intensities)
• Digit (0..9)
Image credit: https://www.tensorflow.org/versions/r0.9/tutorials/mnist/ beginners/index.html
What’s a neural network?
Image credit: https://github.com/cdipaolo/goml/tree/master/perceptron
Image credit: https://en.wikipedia.org/wiki/Artificial_neural_network
Part 2: The MNIST Dataset
Our Data • Images of handwritten digits, size-normalized and centered
• Training: 60,000 examples, test: 10,000 • http://yann.lecun.com/exdb/mnist/
Image credit: https://www.researchgate.net/
How’d We Do? • Correct: 9328 / 10_000 • Incorrect:
672 / 10_000 • Overall: 93.28% accuracy
Developing the App
Front End submit() { fetch('/submit', { method: 'POST', body: this.state.canvas.toDataURL('image/png')
}).then(response => { return response.json(); }).then(j => { this.setState({ prediction: j.prediction }); }); }
Front End render() { return( <div> <EditableCanvas canvas={this.state.canvas} ctx={this.state.ctx} ref='editableCanvas'
/> <Prediction number={this.state.prediction} /> <div> <Button onClick={this.submit} value='Submit' /> <Button onClick={this.clear} value='Clear' /> </div> </div> ); }
Back End train = RubyFann::TrainData.new(inputs: features, desired_outputs: labels) fann =
RubyFann::Standard.new(num_inputs: 576, hidden_neurons: [300], num_outputs: 10) fann.train_on_data(train, 1000, 10, 0.01)
STOP #demotime
Summary • Machine learning is generalization • Supervised learning is
labeled data -> unlabeled data • Neural networks are awesome • You can do all this with Ruby!
Takeaways (TL;DPA) • We can do machine learning with Ruby
• Contribute to tools like Ruby FANN (github.com/tangledpath/ruby-fann) and sciruby (http://sciruby.com/) • Check it out: http://ruby-mnist.herokuapp.com/ • PRs welcome! github.com/ericqweinstein/ruby- mnist
Thank You!
Questions? eric_weinstein = { employer: 'Hulu', github: 'ericqweinstein', twitter: 'ericqweinstein',
website: 'ericweinste.in' } 30% off with RUBYCONF30!