$30 off During Our Annual Pro Sale. View Details »
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Domo Arigato, Mr. Roboto: Machine Learning with...
Search
Eric Weinstein
November 10, 2016
Technology
1
1.4k
Domo Arigato, Mr. Roboto: Machine Learning with Ruby
Slides for my RubyConf 2016 talk on machine learning.
Eric Weinstein
November 10, 2016
Tweet
Share
More Decks by Eric Weinstein
See All by Eric Weinstein
Interview Them Where They Are
ericqweinstein
0
100
Value Your Types!
ericqweinstein
0
61
Being Good: An Introduction to Robo- and Machine Ethics
ericqweinstein
1
1.7k
What If...?: Ruby 3
ericqweinstein
1
180
Infinite State Machine
ericqweinstein
1
96
Do Androids Dream of Electronic Dance Music?
ericqweinstein
1
81
Machine Learning with Elixir and Phoenix
ericqweinstein
1
880
Machine Learning with Clojure and Apache Spark
ericqweinstein
1
350
A Nil Device, A Lonely Operator, and a Voyage to the Void Star
ericqweinstein
1
890
Other Decks in Technology
See All in Technology
「今までで一番学びになった瞬間」発表 LT - Shinjuku.rb #96
kozy4324
0
140
メインテーマはKubernetes
nwiizo
2
330
Engineer Recruting Deck
siva_official
PRO
1
3.3k
241130紅白ぺぱ合戦LT「編集の技術」
toya524287
5
580
プロセス改善とE2E自動テストによる、プロダクトの品質向上事例
tomasagi
1
1.7k
40歲的我會給20歲的自己,關於軟體開發的7個建議
line_developers_tw
PRO
0
120
マルチプロダクト、マルチデータ基盤での Looker活用事例 〜BQじゃなくてもLookerはいいぞ〜
gappy50
0
130
Kubernetes だけじゃない!Amazon ECS で実現するクラウドネイティブな GitHub Actions セルフホストランナー / CNDW2024
ponkio_o
PRO
6
430
ポストモーテムレビューをブレームレスに運営し有効な改善アクションを引き出すために必要だったこと / What is needed to operate postmortem blamelessly and elicit improvement actions
yamaguchitk333
0
160
もう一度、 事業を支えるシステムに。
leveragestech
6
3.1k
歴史あるRuby on Railsでデッドコードを見つけ、 消す方法@yabaibuki.dev #3
ayumu838
0
1.7k
12/3(火)のBedrockアプデ速報(re:Invent 2024 Daily re:Cap #2 with AWS Heroes)
minorun365
PRO
4
120
Featured
See All Featured
How to Ace a Technical Interview
jacobian
276
23k
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
126
18k
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
4
410
Building a Scalable Design System with Sketch
lauravandoore
459
33k
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
280
13k
The Straight Up "How To Draw Better" Workshop
denniskardys
232
140k
Stop Working from a Prison Cell
hatefulcrawdad
267
20k
Designing Experiences People Love
moore
138
23k
Become a Pro
speakerdeck
PRO
25
5k
Adopting Sorbet at Scale
ufuk
73
9.1k
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
44
6.9k
Done Done
chrislema
181
16k
Transcript
Dōmo arigatō, Mr. Roboto: Machine Learning with Ruby # Eric
Weinstein # RubyConf 2016 # Cincinnati, Ohio # 10 November 2016
for Joshua
Part 0: Hello!
About Me eric_weinstein = { employer: 'Hulu', github: 'ericqweinstein', twitter:
'ericqweinstein', website: 'ericweinste.in' } 30% off with RUBYCONF30!
Agenda • What is machine learning? • What is supervised
learning? • What’s a neural network? • Machine learning with Ruby and the MNIST dataset
Part 1: Machine Learning
None
What’s machine learning?
In a word:
Generalization
What’s Supervised Learning? Classification or regression, generalizing from labeled data
to unlabeled data
Features && Labels • Raw pixel features (vectors of intensities)
• Digit (0..9)
Features && Labels • Raw pixel features (vectors of intensities)
• Digit (0..9)
Image credit: https://www.tensorflow.org/versions/r0.9/tutorials/mnist/ beginners/index.html
What’s a neural network?
Image credit: https://github.com/cdipaolo/goml/tree/master/perceptron
Image credit: https://en.wikipedia.org/wiki/Artificial_neural_network
Part 2: The MNIST Dataset
Our Data • Images of handwritten digits, size-normalized and centered
• Training: 60,000 examples, test: 10,000 • http://yann.lecun.com/exdb/mnist/
Image credit: https://www.researchgate.net/
How’d We Do? • Correct: 9328 / 10_000 • Incorrect:
672 / 10_000 • Overall: 93.28% accuracy
Developing the App
Front End submit() { fetch('/submit', { method: 'POST', body: this.state.canvas.toDataURL('image/png')
}).then(response => { return response.json(); }).then(j => { this.setState({ prediction: j.prediction }); }); }
Front End render() { return( <div> <EditableCanvas canvas={this.state.canvas} ctx={this.state.ctx} ref='editableCanvas'
/> <Prediction number={this.state.prediction} /> <div> <Button onClick={this.submit} value='Submit' /> <Button onClick={this.clear} value='Clear' /> </div> </div> ); }
Back End train = RubyFann::TrainData.new(inputs: features, desired_outputs: labels) fann =
RubyFann::Standard.new(num_inputs: 576, hidden_neurons: [300], num_outputs: 10) fann.train_on_data(train, 1000, 10, 0.01)
STOP #demotime
Summary • Machine learning is generalization • Supervised learning is
labeled data -> unlabeled data • Neural networks are awesome • You can do all this with Ruby!
Takeaways (TL;DPA) • We can do machine learning with Ruby
• Contribute to tools like Ruby FANN (github.com/tangledpath/ruby-fann) and sciruby (http://sciruby.com/) • Check it out: http://ruby-mnist.herokuapp.com/ • PRs welcome! github.com/ericqweinstein/ruby- mnist
Thank You!
Questions? eric_weinstein = { employer: 'Hulu', github: 'ericqweinstein', twitter: 'ericqweinstein',
website: 'ericweinste.in' } 30% off with RUBYCONF30!