Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Domo Arigato, Mr. Roboto: Machine Learning with...
Search
Eric Weinstein
November 10, 2016
Technology
1
1.5k
Domo Arigato, Mr. Roboto: Machine Learning with Ruby
Slides for my RubyConf 2016 talk on machine learning.
Eric Weinstein
November 10, 2016
Tweet
Share
More Decks by Eric Weinstein
See All by Eric Weinstein
Interview Them Where They Are
ericqweinstein
0
120
Value Your Types!
ericqweinstein
0
86
Being Good: An Introduction to Robo- and Machine Ethics
ericqweinstein
1
1.8k
What If...?: Ruby 3
ericqweinstein
1
200
Infinite State Machine
ericqweinstein
1
120
Do Androids Dream of Electronic Dance Music?
ericqweinstein
1
100
Machine Learning with Elixir and Phoenix
ericqweinstein
1
950
Machine Learning with Clojure and Apache Spark
ericqweinstein
1
400
A Nil Device, A Lonely Operator, and a Voyage to the Void Star
ericqweinstein
1
980
Other Decks in Technology
See All in Technology
20250807_Kiroと私の反省会
riz3f7
0
200
AI関数が早くなったので試してみよう
kumakura
0
250
✨敗北解法コレクション✨〜Expertだった頃に足りなかった知識と技術〜
nanachi
1
670
人に寄り添うAIエージェントとアーキテクチャ #BetAIDay
layerx
PRO
9
2.1k
いかにして命令の入れ替わりについて心配するのをやめ、メモリモデルを愛するようになったか(改)
nullpo_head
7
2.5k
Serverless Meetup #21
yoshidashingo
1
120
リリース2ヶ月で収益化した話
kent_code3
1
230
Bet "Bet AI" - Accelerating Our AI Journey #BetAIDay
layerx
PRO
4
1.7k
AI時代の経営、Bet AI Vision #BetAIDay
layerx
PRO
1
1.9k
Google Agentspaceを実際に導入した効果と今後の展望
mixi_engineers
PRO
3
400
Eval-Centric AI: Agent 開発におけるベストプラクティスの探求
asei
0
110
Lambda management with ecspresso and Terraform
ijin
2
160
Featured
See All Featured
The Language of Interfaces
destraynor
158
25k
Raft: Consensus for Rubyists
vanstee
140
7.1k
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
110
19k
Building a Modern Day E-commerce SEO Strategy
aleyda
43
7.4k
Facilitating Awesome Meetings
lara
54
6.5k
Designing Dashboards & Data Visualisations in Web Apps
destraynor
231
53k
Optimizing for Happiness
mojombo
379
70k
How to Create Impact in a Changing Tech Landscape [PerfNow 2023]
tammyeverts
53
2.9k
Side Projects
sachag
455
43k
Mobile First: as difficult as doing things right
swwweet
223
9.9k
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
229
22k
The Power of CSS Pseudo Elements
geoffreycrofte
77
5.9k
Transcript
Dōmo arigatō, Mr. Roboto: Machine Learning with Ruby # Eric
Weinstein # RubyConf 2016 # Cincinnati, Ohio # 10 November 2016
for Joshua
Part 0: Hello!
About Me eric_weinstein = { employer: 'Hulu', github: 'ericqweinstein', twitter:
'ericqweinstein', website: 'ericweinste.in' } 30% off with RUBYCONF30!
Agenda • What is machine learning? • What is supervised
learning? • What’s a neural network? • Machine learning with Ruby and the MNIST dataset
Part 1: Machine Learning
None
What’s machine learning?
In a word:
Generalization
What’s Supervised Learning? Classification or regression, generalizing from labeled data
to unlabeled data
Features && Labels • Raw pixel features (vectors of intensities)
• Digit (0..9)
Features && Labels • Raw pixel features (vectors of intensities)
• Digit (0..9)
Image credit: https://www.tensorflow.org/versions/r0.9/tutorials/mnist/ beginners/index.html
What’s a neural network?
Image credit: https://github.com/cdipaolo/goml/tree/master/perceptron
Image credit: https://en.wikipedia.org/wiki/Artificial_neural_network
Part 2: The MNIST Dataset
Our Data • Images of handwritten digits, size-normalized and centered
• Training: 60,000 examples, test: 10,000 • http://yann.lecun.com/exdb/mnist/
Image credit: https://www.researchgate.net/
How’d We Do? • Correct: 9328 / 10_000 • Incorrect:
672 / 10_000 • Overall: 93.28% accuracy
Developing the App
Front End submit() { fetch('/submit', { method: 'POST', body: this.state.canvas.toDataURL('image/png')
}).then(response => { return response.json(); }).then(j => { this.setState({ prediction: j.prediction }); }); }
Front End render() { return( <div> <EditableCanvas canvas={this.state.canvas} ctx={this.state.ctx} ref='editableCanvas'
/> <Prediction number={this.state.prediction} /> <div> <Button onClick={this.submit} value='Submit' /> <Button onClick={this.clear} value='Clear' /> </div> </div> ); }
Back End train = RubyFann::TrainData.new(inputs: features, desired_outputs: labels) fann =
RubyFann::Standard.new(num_inputs: 576, hidden_neurons: [300], num_outputs: 10) fann.train_on_data(train, 1000, 10, 0.01)
STOP #demotime
Summary • Machine learning is generalization • Supervised learning is
labeled data -> unlabeled data • Neural networks are awesome • You can do all this with Ruby!
Takeaways (TL;DPA) • We can do machine learning with Ruby
• Contribute to tools like Ruby FANN (github.com/tangledpath/ruby-fann) and sciruby (http://sciruby.com/) • Check it out: http://ruby-mnist.herokuapp.com/ • PRs welcome! github.com/ericqweinstein/ruby- mnist
Thank You!
Questions? eric_weinstein = { employer: 'Hulu', github: 'ericqweinstein', twitter: 'ericqweinstein',
website: 'ericweinste.in' } 30% off with RUBYCONF30!