Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Domo Arigato, Mr. Roboto: Machine Learning with...
Search
Eric Weinstein
November 10, 2016
Technology
1
1.5k
Domo Arigato, Mr. Roboto: Machine Learning with Ruby
Slides for my RubyConf 2016 talk on machine learning.
Eric Weinstein
November 10, 2016
Tweet
Share
More Decks by Eric Weinstein
See All by Eric Weinstein
Interview Them Where They Are
ericqweinstein
0
120
Value Your Types!
ericqweinstein
0
92
Being Good: An Introduction to Robo- and Machine Ethics
ericqweinstein
1
1.9k
What If...?: Ruby 3
ericqweinstein
1
210
Infinite State Machine
ericqweinstein
1
120
Do Androids Dream of Electronic Dance Music?
ericqweinstein
1
110
Machine Learning with Elixir and Phoenix
ericqweinstein
1
960
Machine Learning with Clojure and Apache Spark
ericqweinstein
1
410
A Nil Device, A Lonely Operator, and a Voyage to the Void Star
ericqweinstein
1
990
Other Decks in Technology
See All in Technology
LLMアプリケーション開発におけるセキュリティリスクと対策 / LLM Application Security
flatt_security
7
1.9k
AI駆動開発を推進するためにサービス開発チームで 取り組んでいること
noayaoshiro
0
180
KMP の Swift export
kokihirokawa
0
330
Oracle Base Database Service 技術詳細
oracle4engineer
PRO
11
77k
Optuna DashboardにおけるPLaMo2連携機能の紹介 / PFN LLM セミナー
pfn
PRO
1
890
成長自己責任時代のあるきかた/How to navigate the era of personal responsibility for growth
kwappa
3
270
小学4年生夏休みの自由研究「ぼくと Copilot エージェント」
taichinakamura
0
210
AWSにおけるTrend Vision Oneの効果について
shimak
0
130
ユニットテストに対する考え方の変遷 / Everyone should watch his live coding
mdstoy
0
130
英語は話せません!それでも海外チームと信頼関係を作るため、対話を重ねた2ヶ月間のまなび
niioka_97
0
120
o11yで育てる、強い内製開発組織
_awache
3
120
AI Agentと MCP Serverで実現する iOSアプリの 自動テスト作成の効率化
spiderplus_cb
0
500
Featured
See All Featured
jQuery: Nuts, Bolts and Bling
dougneiner
64
7.9k
Keith and Marios Guide to Fast Websites
keithpitt
411
22k
GitHub's CSS Performance
jonrohan
1032
460k
Understanding Cognitive Biases in Performance Measurement
bluesmoon
29
2.6k
Measuring & Analyzing Core Web Vitals
bluesmoon
9
610
Become a Pro
speakerdeck
PRO
29
5.5k
The Invisible Side of Design
smashingmag
301
51k
Context Engineering - Making Every Token Count
addyosmani
5
190
XXLCSS - How to scale CSS and keep your sanity
sugarenia
248
1.3M
Intergalactic Javascript Robots from Outer Space
tanoku
273
27k
Automating Front-end Workflow
addyosmani
1371
200k
ピンチをチャンスに:未来をつくるプロダクトロードマップ #pmconf2020
aki_iinuma
127
53k
Transcript
Dōmo arigatō, Mr. Roboto: Machine Learning with Ruby # Eric
Weinstein # RubyConf 2016 # Cincinnati, Ohio # 10 November 2016
for Joshua
Part 0: Hello!
About Me eric_weinstein = { employer: 'Hulu', github: 'ericqweinstein', twitter:
'ericqweinstein', website: 'ericweinste.in' } 30% off with RUBYCONF30!
Agenda • What is machine learning? • What is supervised
learning? • What’s a neural network? • Machine learning with Ruby and the MNIST dataset
Part 1: Machine Learning
None
What’s machine learning?
In a word:
Generalization
What’s Supervised Learning? Classification or regression, generalizing from labeled data
to unlabeled data
Features && Labels • Raw pixel features (vectors of intensities)
• Digit (0..9)
Features && Labels • Raw pixel features (vectors of intensities)
• Digit (0..9)
Image credit: https://www.tensorflow.org/versions/r0.9/tutorials/mnist/ beginners/index.html
What’s a neural network?
Image credit: https://github.com/cdipaolo/goml/tree/master/perceptron
Image credit: https://en.wikipedia.org/wiki/Artificial_neural_network
Part 2: The MNIST Dataset
Our Data • Images of handwritten digits, size-normalized and centered
• Training: 60,000 examples, test: 10,000 • http://yann.lecun.com/exdb/mnist/
Image credit: https://www.researchgate.net/
How’d We Do? • Correct: 9328 / 10_000 • Incorrect:
672 / 10_000 • Overall: 93.28% accuracy
Developing the App
Front End submit() { fetch('/submit', { method: 'POST', body: this.state.canvas.toDataURL('image/png')
}).then(response => { return response.json(); }).then(j => { this.setState({ prediction: j.prediction }); }); }
Front End render() { return( <div> <EditableCanvas canvas={this.state.canvas} ctx={this.state.ctx} ref='editableCanvas'
/> <Prediction number={this.state.prediction} /> <div> <Button onClick={this.submit} value='Submit' /> <Button onClick={this.clear} value='Clear' /> </div> </div> ); }
Back End train = RubyFann::TrainData.new(inputs: features, desired_outputs: labels) fann =
RubyFann::Standard.new(num_inputs: 576, hidden_neurons: [300], num_outputs: 10) fann.train_on_data(train, 1000, 10, 0.01)
STOP #demotime
Summary • Machine learning is generalization • Supervised learning is
labeled data -> unlabeled data • Neural networks are awesome • You can do all this with Ruby!
Takeaways (TL;DPA) • We can do machine learning with Ruby
• Contribute to tools like Ruby FANN (github.com/tangledpath/ruby-fann) and sciruby (http://sciruby.com/) • Check it out: http://ruby-mnist.herokuapp.com/ • PRs welcome! github.com/ericqweinstein/ruby- mnist
Thank You!
Questions? eric_weinstein = { employer: 'Hulu', github: 'ericqweinstein', twitter: 'ericqweinstein',
website: 'ericweinste.in' } 30% off with RUBYCONF30!