Lock in $30 Savings on PRO—Offer Ends Soon! ⏳
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Domo Arigato, Mr. Roboto: Machine Learning with...
Search
Eric Weinstein
November 10, 2016
Technology
1
1.5k
Domo Arigato, Mr. Roboto: Machine Learning with Ruby
Slides for my RubyConf 2016 talk on machine learning.
Eric Weinstein
November 10, 2016
Tweet
Share
More Decks by Eric Weinstein
See All by Eric Weinstein
Interview Them Where They Are
ericqweinstein
0
130
Value Your Types!
ericqweinstein
0
100
Being Good: An Introduction to Robo- and Machine Ethics
ericqweinstein
1
1.9k
What If...?: Ruby 3
ericqweinstein
1
220
Infinite State Machine
ericqweinstein
1
140
Do Androids Dream of Electronic Dance Music?
ericqweinstein
1
110
Machine Learning with Elixir and Phoenix
ericqweinstein
1
970
Machine Learning with Clojure and Apache Spark
ericqweinstein
1
420
A Nil Device, A Lonely Operator, and a Voyage to the Void Star
ericqweinstein
1
1k
Other Decks in Technology
See All in Technology
AWSインフルエンサーへの道 / load of AWS Influencer
whisaiyo
0
220
Strands AgentsとNova 2 SonicでS2Sを実践してみた
yama3133
1
1.8k
AWSに革命を起こすかもしれない新サービス・アップデートについてのお話
yama3133
0
500
"人"が頑張るAI駆動開発
yokomachi
1
130
AI駆動開発の実践とその未来
eltociear
1
490
Lookerで実現するセキュアな外部データ提供
zozotech
PRO
0
200
LayerX QA Night#1
koyaman2
0
250
Claude Codeを使った情報整理術
knishioka
1
320
Amazon Connect アップデート! AIエージェントにMCPツールを設定してみた!
ysuzuki
0
130
アラフォーおじさん、はじめてre:Inventに行く / A 40-Something Guy’s First re:Invent Adventure
kaminashi
0
140
マイクロサービスへの5年間 ぶっちゃけ何をしてどうなったか
joker1007
19
7.6k
【開発を止めるな】機能追加と並行して進めるアーキテクチャ改善/Keep Shipping: Architecture Improvements Without Pausing Dev
bitkey
PRO
1
130
Featured
See All Featured
BBQ
matthewcrist
89
9.9k
Put a Button on it: Removing Barriers to Going Fast.
kastner
60
4.1k
Exploring the relationship between traditional SERPs and Gen AI search
raygrieselhuber
PRO
2
3.4k
Bioeconomy Workshop: Dr. Julius Ecuru, Opportunities for a Bioeconomy in West Africa
akademiya2063
PRO
0
31
Neural Spatial Audio Processing for Sound Field Analysis and Control
skoyamalab
0
130
New Earth Scene 8
popppiees
0
1.2k
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
34
2.6k
Agile Leadership in an Agile Organization
kimpetersen
PRO
0
55
Have SEOs Ruined the Internet? - User Awareness of SEO in 2025
akashhashmi
0
190
Designing for humans not robots
tammielis
254
26k
Deep Space Network (abreviated)
tonyrice
0
21
Joys of Absence: A Defence of Solitary Play
codingconduct
1
260
Transcript
Dōmo arigatō, Mr. Roboto: Machine Learning with Ruby # Eric
Weinstein # RubyConf 2016 # Cincinnati, Ohio # 10 November 2016
for Joshua
Part 0: Hello!
About Me eric_weinstein = { employer: 'Hulu', github: 'ericqweinstein', twitter:
'ericqweinstein', website: 'ericweinste.in' } 30% off with RUBYCONF30!
Agenda • What is machine learning? • What is supervised
learning? • What’s a neural network? • Machine learning with Ruby and the MNIST dataset
Part 1: Machine Learning
None
What’s machine learning?
In a word:
Generalization
What’s Supervised Learning? Classification or regression, generalizing from labeled data
to unlabeled data
Features && Labels • Raw pixel features (vectors of intensities)
• Digit (0..9)
Features && Labels • Raw pixel features (vectors of intensities)
• Digit (0..9)
Image credit: https://www.tensorflow.org/versions/r0.9/tutorials/mnist/ beginners/index.html
What’s a neural network?
Image credit: https://github.com/cdipaolo/goml/tree/master/perceptron
Image credit: https://en.wikipedia.org/wiki/Artificial_neural_network
Part 2: The MNIST Dataset
Our Data • Images of handwritten digits, size-normalized and centered
• Training: 60,000 examples, test: 10,000 • http://yann.lecun.com/exdb/mnist/
Image credit: https://www.researchgate.net/
How’d We Do? • Correct: 9328 / 10_000 • Incorrect:
672 / 10_000 • Overall: 93.28% accuracy
Developing the App
Front End submit() { fetch('/submit', { method: 'POST', body: this.state.canvas.toDataURL('image/png')
}).then(response => { return response.json(); }).then(j => { this.setState({ prediction: j.prediction }); }); }
Front End render() { return( <div> <EditableCanvas canvas={this.state.canvas} ctx={this.state.ctx} ref='editableCanvas'
/> <Prediction number={this.state.prediction} /> <div> <Button onClick={this.submit} value='Submit' /> <Button onClick={this.clear} value='Clear' /> </div> </div> ); }
Back End train = RubyFann::TrainData.new(inputs: features, desired_outputs: labels) fann =
RubyFann::Standard.new(num_inputs: 576, hidden_neurons: [300], num_outputs: 10) fann.train_on_data(train, 1000, 10, 0.01)
STOP #demotime
Summary • Machine learning is generalization • Supervised learning is
labeled data -> unlabeled data • Neural networks are awesome • You can do all this with Ruby!
Takeaways (TL;DPA) • We can do machine learning with Ruby
• Contribute to tools like Ruby FANN (github.com/tangledpath/ruby-fann) and sciruby (http://sciruby.com/) • Check it out: http://ruby-mnist.herokuapp.com/ • PRs welcome! github.com/ericqweinstein/ruby- mnist
Thank You!
Questions? eric_weinstein = { employer: 'Hulu', github: 'ericqweinstein', twitter: 'ericqweinstein',
website: 'ericweinste.in' } 30% off with RUBYCONF30!