Lock in $30 Savings on PRO—Offer Ends Soon! ⏳
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Domo Arigato, Mr. Roboto: Machine Learning with...
Search
Eric Weinstein
November 10, 2016
Technology
1
1.5k
Domo Arigato, Mr. Roboto: Machine Learning with Ruby
Slides for my RubyConf 2016 talk on machine learning.
Eric Weinstein
November 10, 2016
Tweet
Share
More Decks by Eric Weinstein
See All by Eric Weinstein
Interview Them Where They Are
ericqweinstein
0
130
Value Your Types!
ericqweinstein
0
100
Being Good: An Introduction to Robo- and Machine Ethics
ericqweinstein
1
1.9k
What If...?: Ruby 3
ericqweinstein
1
220
Infinite State Machine
ericqweinstein
1
130
Do Androids Dream of Electronic Dance Music?
ericqweinstein
1
110
Machine Learning with Elixir and Phoenix
ericqweinstein
1
970
Machine Learning with Clojure and Apache Spark
ericqweinstein
1
420
A Nil Device, A Lonely Operator, and a Voyage to the Void Star
ericqweinstein
1
1k
Other Decks in Technology
See All in Technology
業務のトイルをバスターせよ 〜AI時代の生存戦略〜
staka121
PRO
2
110
打 造 A I 驅 動 的 G i t H u b ⾃ 動 化 ⼯ 作 流 程
appleboy
0
290
因果AIへの招待
sshimizu2006
0
960
re:Invent2025 コンテナ系アップデート振り返り(+CloudWatchログのアップデート紹介)
masukawa
0
360
re:Invent 2025 ~何をする者であり、どこへいくのか~
tetutetu214
0
210
学習データって増やせばいいんですか?
ftakahashi
2
320
チーリンについて
hirotomotaguchi
6
1.9k
第4回 「メタデータ通り」 リアル開催
datayokocho
0
130
Edge AI Performance on Zephyr Pico vs. Pico 2
iotengineer22
0
140
品質のための共通認識
kakehashi
PRO
3
250
Karate+Database RiderによるAPI自動テスト導入工数をCline+GitLab MCPを使って2割削減を目指す! / 20251206 Kazuki Takahashi
shift_evolve
PRO
1
720
多様なデジタルアイデンティティを攻撃からどうやって守るのか / 20251212
ayokura
0
430
Featured
See All Featured
Bash Introduction
62gerente
615
210k
VelocityConf: Rendering Performance Case Studies
addyosmani
333
24k
Testing 201, or: Great Expectations
jmmastey
46
7.8k
ReactJS: Keep Simple. Everything can be a component!
pedronauck
666
130k
XXLCSS - How to scale CSS and keep your sanity
sugarenia
249
1.3M
YesSQL, Process and Tooling at Scale
rocio
174
15k
Making the Leap to Tech Lead
cromwellryan
135
9.7k
What’s in a name? Adding method to the madness
productmarketing
PRO
24
3.8k
The World Runs on Bad Software
bkeepers
PRO
72
12k
How to train your dragon (web standard)
notwaldorf
97
6.4k
A designer walks into a library…
pauljervisheath
210
24k
How To Stay Up To Date on Web Technology
chriscoyier
791
250k
Transcript
Dōmo arigatō, Mr. Roboto: Machine Learning with Ruby # Eric
Weinstein # RubyConf 2016 # Cincinnati, Ohio # 10 November 2016
for Joshua
Part 0: Hello!
About Me eric_weinstein = { employer: 'Hulu', github: 'ericqweinstein', twitter:
'ericqweinstein', website: 'ericweinste.in' } 30% off with RUBYCONF30!
Agenda • What is machine learning? • What is supervised
learning? • What’s a neural network? • Machine learning with Ruby and the MNIST dataset
Part 1: Machine Learning
None
What’s machine learning?
In a word:
Generalization
What’s Supervised Learning? Classification or regression, generalizing from labeled data
to unlabeled data
Features && Labels • Raw pixel features (vectors of intensities)
• Digit (0..9)
Features && Labels • Raw pixel features (vectors of intensities)
• Digit (0..9)
Image credit: https://www.tensorflow.org/versions/r0.9/tutorials/mnist/ beginners/index.html
What’s a neural network?
Image credit: https://github.com/cdipaolo/goml/tree/master/perceptron
Image credit: https://en.wikipedia.org/wiki/Artificial_neural_network
Part 2: The MNIST Dataset
Our Data • Images of handwritten digits, size-normalized and centered
• Training: 60,000 examples, test: 10,000 • http://yann.lecun.com/exdb/mnist/
Image credit: https://www.researchgate.net/
How’d We Do? • Correct: 9328 / 10_000 • Incorrect:
672 / 10_000 • Overall: 93.28% accuracy
Developing the App
Front End submit() { fetch('/submit', { method: 'POST', body: this.state.canvas.toDataURL('image/png')
}).then(response => { return response.json(); }).then(j => { this.setState({ prediction: j.prediction }); }); }
Front End render() { return( <div> <EditableCanvas canvas={this.state.canvas} ctx={this.state.ctx} ref='editableCanvas'
/> <Prediction number={this.state.prediction} /> <div> <Button onClick={this.submit} value='Submit' /> <Button onClick={this.clear} value='Clear' /> </div> </div> ); }
Back End train = RubyFann::TrainData.new(inputs: features, desired_outputs: labels) fann =
RubyFann::Standard.new(num_inputs: 576, hidden_neurons: [300], num_outputs: 10) fann.train_on_data(train, 1000, 10, 0.01)
STOP #demotime
Summary • Machine learning is generalization • Supervised learning is
labeled data -> unlabeled data • Neural networks are awesome • You can do all this with Ruby!
Takeaways (TL;DPA) • We can do machine learning with Ruby
• Contribute to tools like Ruby FANN (github.com/tangledpath/ruby-fann) and sciruby (http://sciruby.com/) • Check it out: http://ruby-mnist.herokuapp.com/ • PRs welcome! github.com/ericqweinstein/ruby- mnist
Thank You!
Questions? eric_weinstein = { employer: 'Hulu', github: 'ericqweinstein', twitter: 'ericqweinstein',
website: 'ericweinste.in' } 30% off with RUBYCONF30!