Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Domo Arigato, Mr. Roboto: Machine Learning with...
Search
Eric Weinstein
November 10, 2016
Technology
1
1.4k
Domo Arigato, Mr. Roboto: Machine Learning with Ruby
Slides for my RubyConf 2016 talk on machine learning.
Eric Weinstein
November 10, 2016
Tweet
Share
More Decks by Eric Weinstein
See All by Eric Weinstein
Interview Them Where They Are
ericqweinstein
0
100
Value Your Types!
ericqweinstein
0
61
Being Good: An Introduction to Robo- and Machine Ethics
ericqweinstein
1
1.7k
What If...?: Ruby 3
ericqweinstein
1
180
Infinite State Machine
ericqweinstein
1
94
Do Androids Dream of Electronic Dance Music?
ericqweinstein
1
80
Machine Learning with Elixir and Phoenix
ericqweinstein
1
880
Machine Learning with Clojure and Apache Spark
ericqweinstein
1
350
A Nil Device, A Lonely Operator, and a Voyage to the Void Star
ericqweinstein
1
880
Other Decks in Technology
See All in Technology
障害対応指揮の意思決定と情報共有における価値観 / Waroom Meetup #2
arthur1
5
470
RubyのWebアプリケーションを50倍速くする方法 / How to Make a Ruby Web Application 50 Times Faster
hogelog
3
940
適材適所の技術選定 〜GraphQL・REST API・tRPC〜 / Optimal Technology Selection
kakehashi
1
150
Amazon CloudWatch Network Monitor のススメ
yuki_ink
1
200
[CV勉強会@関東 ECCV2024 読み会] オンラインマッピング x トラッキング MapTracker: Tracking with Strided Memory Fusion for Consistent Vector HD Mapping (Chen+, ECCV24)
abemii
0
220
The Rise of LLMOps
asei
5
1.2k
ノーコードデータ分析ツールで体験する時系列データ分析超入門
negi111111
0
410
iOSチームとAndroidチームでブランチ運用が違ったので整理してます
sansantech
PRO
0
120
[FOSS4G 2019 Niigata] AIによる効率的危険斜面抽出システムの開発について
nssv
0
310
個人でもIAM Identity Centerを使おう!(アクセス管理編)
ryder472
3
180
【若手エンジニア応援LT会】ソフトウェアを学んできた私がインフラエンジニアを目指した理由
kazushi_ohata
0
150
Evangelismo técnico: ¿qué, cómo y por qué?
trishagee
0
350
Featured
See All Featured
Stop Working from a Prison Cell
hatefulcrawdad
267
20k
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
PRO
10
720
Automating Front-end Workflow
addyosmani
1366
200k
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
31
2.7k
Statistics for Hackers
jakevdp
796
220k
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
250
21k
Building Flexible Design Systems
yeseniaperezcruz
327
38k
Being A Developer After 40
akosma
86
590k
Fireside Chat
paigeccino
34
3k
The Art of Delivering Value - GDevCon NA Keynote
reverentgeek
8
740
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
329
21k
Understanding Cognitive Biases in Performance Measurement
bluesmoon
26
1.4k
Transcript
Dōmo arigatō, Mr. Roboto: Machine Learning with Ruby # Eric
Weinstein # RubyConf 2016 # Cincinnati, Ohio # 10 November 2016
for Joshua
Part 0: Hello!
About Me eric_weinstein = { employer: 'Hulu', github: 'ericqweinstein', twitter:
'ericqweinstein', website: 'ericweinste.in' } 30% off with RUBYCONF30!
Agenda • What is machine learning? • What is supervised
learning? • What’s a neural network? • Machine learning with Ruby and the MNIST dataset
Part 1: Machine Learning
None
What’s machine learning?
In a word:
Generalization
What’s Supervised Learning? Classification or regression, generalizing from labeled data
to unlabeled data
Features && Labels • Raw pixel features (vectors of intensities)
• Digit (0..9)
Features && Labels • Raw pixel features (vectors of intensities)
• Digit (0..9)
Image credit: https://www.tensorflow.org/versions/r0.9/tutorials/mnist/ beginners/index.html
What’s a neural network?
Image credit: https://github.com/cdipaolo/goml/tree/master/perceptron
Image credit: https://en.wikipedia.org/wiki/Artificial_neural_network
Part 2: The MNIST Dataset
Our Data • Images of handwritten digits, size-normalized and centered
• Training: 60,000 examples, test: 10,000 • http://yann.lecun.com/exdb/mnist/
Image credit: https://www.researchgate.net/
How’d We Do? • Correct: 9328 / 10_000 • Incorrect:
672 / 10_000 • Overall: 93.28% accuracy
Developing the App
Front End submit() { fetch('/submit', { method: 'POST', body: this.state.canvas.toDataURL('image/png')
}).then(response => { return response.json(); }).then(j => { this.setState({ prediction: j.prediction }); }); }
Front End render() { return( <div> <EditableCanvas canvas={this.state.canvas} ctx={this.state.ctx} ref='editableCanvas'
/> <Prediction number={this.state.prediction} /> <div> <Button onClick={this.submit} value='Submit' /> <Button onClick={this.clear} value='Clear' /> </div> </div> ); }
Back End train = RubyFann::TrainData.new(inputs: features, desired_outputs: labels) fann =
RubyFann::Standard.new(num_inputs: 576, hidden_neurons: [300], num_outputs: 10) fann.train_on_data(train, 1000, 10, 0.01)
STOP #demotime
Summary • Machine learning is generalization • Supervised learning is
labeled data -> unlabeled data • Neural networks are awesome • You can do all this with Ruby!
Takeaways (TL;DPA) • We can do machine learning with Ruby
• Contribute to tools like Ruby FANN (github.com/tangledpath/ruby-fann) and sciruby (http://sciruby.com/) • Check it out: http://ruby-mnist.herokuapp.com/ • PRs welcome! github.com/ericqweinstein/ruby- mnist
Thank You!
Questions? eric_weinstein = { employer: 'Hulu', github: 'ericqweinstein', twitter: 'ericqweinstein',
website: 'ericweinste.in' } 30% off with RUBYCONF30!