Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Domo Arigato, Mr. Roboto: Machine Learning with...
Search
Eric Weinstein
November 10, 2016
Technology
1
1.5k
Domo Arigato, Mr. Roboto: Machine Learning with Ruby
Slides for my RubyConf 2016 talk on machine learning.
Eric Weinstein
November 10, 2016
Tweet
Share
More Decks by Eric Weinstein
See All by Eric Weinstein
Interview Them Where They Are
ericqweinstein
0
140
Value Your Types!
ericqweinstein
0
100
Being Good: An Introduction to Robo- and Machine Ethics
ericqweinstein
1
2k
What If...?: Ruby 3
ericqweinstein
1
220
Infinite State Machine
ericqweinstein
1
150
Do Androids Dream of Electronic Dance Music?
ericqweinstein
1
120
Machine Learning with Elixir and Phoenix
ericqweinstein
1
980
Machine Learning with Clojure and Apache Spark
ericqweinstein
1
430
A Nil Device, A Lonely Operator, and a Voyage to the Void Star
ericqweinstein
1
1k
Other Decks in Technology
See All in Technology
かわいい身体と声を持つ そういうものに私はなりたい
yoshimura_datam
0
310
BiDiってなんだ?
tomorrowkey
2
440
Databricks Free Edition講座 データエンジニアリング編
taka_aki
0
2.7k
OCI技術資料 : OS管理ハブ 概要
ocise
2
4.2k
さくらのクラウドでのシークレット管理を考える/tamachi.sre#2
fujiwara3
1
210
Riverpod3.xで実現する実践的UI実装
fumiyasac0921
1
290
Master Dataグループ紹介資料
sansan33
PRO
1
4.2k
ドメイン駆動セキュリティへの道しるべ
pandayumi
0
170
Contract One Engineering Unit 紹介資料
sansan33
PRO
0
12k
「AIでできますか?」から「Agentを作ってみました」へ ~「理論上わかる」と「やってみる」の隔たりを埋める方法
applism118
3
1.2k
Kiro Power - Amazon Bedrock AgentCore を学ぶ、もう一つの方法
r3_yamauchi
0
110
サラリーマンソフトウェアエンジニアのキャリア
yuheinakasaka
42
20k
Featured
See All Featured
What’s in a name? Adding method to the madness
productmarketing
PRO
24
3.9k
Test your architecture with Archunit
thirion
1
2.1k
What Being in a Rock Band Can Teach Us About Real World SEO
427marketing
0
160
Faster Mobile Websites
deanohume
310
31k
StorybookのUI Testing Handbookを読んだ
zakiyama
31
6.5k
How to make the Groovebox
asonas
2
1.9k
Building a Scalable Design System with Sketch
lauravandoore
463
34k
Building a A Zero-Code AI SEO Workflow
portentint
PRO
0
260
The Power of CSS Pseudo Elements
geoffreycrofte
80
6.1k
How to Talk to Developers About Accessibility
jct
1
100
SEO in 2025: How to Prepare for the Future of Search
ipullrank
3
3.3k
The AI Search Optimization Roadmap by Aleyda Solis
aleyda
1
5.1k
Transcript
Dōmo arigatō, Mr. Roboto: Machine Learning with Ruby # Eric
Weinstein # RubyConf 2016 # Cincinnati, Ohio # 10 November 2016
for Joshua
Part 0: Hello!
About Me eric_weinstein = { employer: 'Hulu', github: 'ericqweinstein', twitter:
'ericqweinstein', website: 'ericweinste.in' } 30% off with RUBYCONF30!
Agenda • What is machine learning? • What is supervised
learning? • What’s a neural network? • Machine learning with Ruby and the MNIST dataset
Part 1: Machine Learning
None
What’s machine learning?
In a word:
Generalization
What’s Supervised Learning? Classification or regression, generalizing from labeled data
to unlabeled data
Features && Labels • Raw pixel features (vectors of intensities)
• Digit (0..9)
Features && Labels • Raw pixel features (vectors of intensities)
• Digit (0..9)
Image credit: https://www.tensorflow.org/versions/r0.9/tutorials/mnist/ beginners/index.html
What’s a neural network?
Image credit: https://github.com/cdipaolo/goml/tree/master/perceptron
Image credit: https://en.wikipedia.org/wiki/Artificial_neural_network
Part 2: The MNIST Dataset
Our Data • Images of handwritten digits, size-normalized and centered
• Training: 60,000 examples, test: 10,000 • http://yann.lecun.com/exdb/mnist/
Image credit: https://www.researchgate.net/
How’d We Do? • Correct: 9328 / 10_000 • Incorrect:
672 / 10_000 • Overall: 93.28% accuracy
Developing the App
Front End submit() { fetch('/submit', { method: 'POST', body: this.state.canvas.toDataURL('image/png')
}).then(response => { return response.json(); }).then(j => { this.setState({ prediction: j.prediction }); }); }
Front End render() { return( <div> <EditableCanvas canvas={this.state.canvas} ctx={this.state.ctx} ref='editableCanvas'
/> <Prediction number={this.state.prediction} /> <div> <Button onClick={this.submit} value='Submit' /> <Button onClick={this.clear} value='Clear' /> </div> </div> ); }
Back End train = RubyFann::TrainData.new(inputs: features, desired_outputs: labels) fann =
RubyFann::Standard.new(num_inputs: 576, hidden_neurons: [300], num_outputs: 10) fann.train_on_data(train, 1000, 10, 0.01)
STOP #demotime
Summary • Machine learning is generalization • Supervised learning is
labeled data -> unlabeled data • Neural networks are awesome • You can do all this with Ruby!
Takeaways (TL;DPA) • We can do machine learning with Ruby
• Contribute to tools like Ruby FANN (github.com/tangledpath/ruby-fann) and sciruby (http://sciruby.com/) • Check it out: http://ruby-mnist.herokuapp.com/ • PRs welcome! github.com/ericqweinstein/ruby- mnist
Thank You!
Questions? eric_weinstein = { employer: 'Hulu', github: 'ericqweinstein', twitter: 'ericqweinstein',
website: 'ericweinste.in' } 30% off with RUBYCONF30!