Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
why is academic writing important for us
Search
Sho Yokoi
PRO
October 26, 2017
Research
3
4.3k
why is academic writing important for us
2017-10-26, 研究室内勉強会資料
(1) なぜライティングスキルは重要なのか
(2) 論文投稿先に関する基礎知識
Sho Yokoi
PRO
October 26, 2017
Tweet
Share
More Decks by Sho Yokoi
See All by Sho Yokoi
Zipf 白色化:タイプとトークンの区別がもたらす良質な埋め込み空間と損失関数
eumesy
PRO
8
1k
Embers of Autoregression: Understanding Large Language Models Through the Problem They are Trained to Solve
eumesy
PRO
7
1.2k
「確率的なオウム」にできること、またそれがなぜできるのかについて
eumesy
PRO
8
3.2k
A Theory of Emergent In-Context Learning as Implicit Structure Induction
eumesy
PRO
5
1.4k
ChatGPT と自然言語処理 / 言語の意味の計算と最適輸送
eumesy
PRO
25
18k
Revisiting Over-smoothing in BERT from the Perspective of Graph
eumesy
PRO
0
1.2k
構造を持った言語データと最適輸送
eumesy
PRO
5
7.3k
最適輸送と自然言語処理
eumesy
PRO
19
12k
言葉の形を教えてくれる自然言語処理
eumesy
PRO
1
1.5k
Other Decks in Research
See All in Research
20240918 交通くまもとーく 未来の鉄道網編(こねくま)
trafficbrain
0
330
Weekly AI Agents News! 9月号 プロダクト/ニュースのアーカイブ
masatoto
2
160
尺度開発における質的研究アプローチ(自主企画シンポジウム7:認知行動療法における尺度開発のこれから)
litalicolab
0
360
打率7割を実現する、プロダクトディスカバリーの7つの極意(pmconf2024)
geshi0820
0
120
多様かつ継続的に変化する環境に適応する情報システム/thesis-defense-presentation
monochromegane
1
580
20241115都市交通決起集会 趣旨説明・熊本事例紹介
trafficbrain
0
680
Weekly AI Agents News! 8月号 プロダクト/ニュースのアーカイブ
masatoto
1
210
12
0325
0
190
[依頼講演] 適応的実験計画法に基づく効率的無線システム設計
k_sato
0
170
クロスセクター効果研究会 熊本都市交通リノベーション~「車1割削減、渋滞半減、公共交通2倍」の実現へ~
trafficbrain
0
290
最近のVisual Odometryと Depth Estimation
sgk
1
300
Whoisの闇
hirachan
3
160
Featured
See All Featured
The World Runs on Bad Software
bkeepers
PRO
65
11k
What's in a price? How to price your products and services
michaelherold
243
12k
Facilitating Awesome Meetings
lara
50
6.1k
Testing 201, or: Great Expectations
jmmastey
40
7.1k
Fight the Zombie Pattern Library - RWD Summit 2016
marcelosomers
232
17k
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
251
21k
Raft: Consensus for Rubyists
vanstee
136
6.7k
Practical Orchestrator
shlominoach
186
10k
[RailsConf 2023] Rails as a piece of cake
palkan
53
5k
Why Our Code Smells
bkeepers
PRO
335
57k
Docker and Python
trallard
41
3.1k
Adopting Sorbet at Scale
ufuk
73
9.1k
Transcript
Why is Writing Important ݚڀͱษڧͷϧʔϧͷҧ͍ɼ͓Αͼจߘઌʹؔ͢Δجૅࣝ Research Skills ษڧձ #1; October
26th, 2017 ౦େֶ סݚڀࣨ ԣҪ (D1) 1
1. ͳͥʮจͷॻ͖ํʯΠγϡʔͳͷ͔ 2
ษڧͱݚڀతධՁͷํ๏ҟͳΔ • ษڧɿطͷݟͷशಘ͕తɽࢼݧϨϙʔτΛ௨ͯ͠ɼֶ शऀͷशख़ΛධՁɾݕূɽ • ݚڀɿਓྨʹͱͬͯະͷࣄ࣮ͷൃݟ͕తɽࠪಡͱҾ༻Λ௨ ͯ͠ɼओுʢจʣͷଥੑॏཁੑΛධՁɾݕূɽ → ݚڀ׆ಈͷ࣮ફతˍظతͳඪɼݚڀ݁ՌΛจʹ·ͱ ΊͯɼࠪಡΛύε͢Δ͜ͱɽݚڀࣨଐ͔Β1ʙ2ͰͨͲΓண
͖͍ͨɽ 3
ͳͥࠪಡ͢Δͷ͔ɼͳͥҾ༻͢Δͷ͔ ਓྨશମͰֶΛલਐͤ͞Δํ๏ৗʹΞοϓσʔτ͞Ε͖ͯ ͨɽݱࡏࠪಡͱҾ༻ʹΑͬͯݚڀͷ࣭Λ୲อ͢Δํ๏͕ओྲྀɽ • Peer ReviewʢࠪಡʣɿݚڀՌʢจʣͷॏཁੑ৽نੑΛ ઐՈಉ࢜Ͱ૬ޓݕূʢࠪಡʣ͢ΔɽࠪಡΛύεͨ͠จ͕ग़ ൛͞Εɼଞऀ͔ΒࢀরͰ͖Δঢ়ଶʹͳΔɽˡ ࠓճͷείʔϓ •
CitationʢҾ༻ʣɿઌߦݚڀΛ౿·͑ɼݞʹΓʢҾ༻͠ʣɼ ݟΛ͞ΒʹਐΊΔɽ·ͨҾ༻ʹΑΓઌߦݚڀܟҙΛࣔ͢ɽ 4
ࠪಡͰνΣοΫ͞ΕΔ߲ • ݚڀͷ༰ʹؔΘΔ߲ Noveltyʢ৽نੑʣɼOriginalityʢಠੑʣɿ৽͠͞ SignificanceʢॏཁੑʣɼRelevanceʢؔ࿈ੑʣɿॏཁ͞ Correctnessʢਖ਼ੑʣɼSoundnessʢଥੑʣɿٞͷଥ͞ • จͷॻ͖ํʹؔΘΔ߲ ← ॻ͖ํۃΊͯॏཁ
ClarityɼPresentationɿهड़ͷ໌ղ͞ɼٞͷ͍͢͞ Repeatabilityɿ࠶ݱੑʢʹಡΈख͕ࢼՄೳ͔ʣ 5
·ͱΊɿͳͥʮจͷॻ͖ํʯΠγϡʔͳͷ͔ • ݚڀ׆ಈʢਓྨͷΛલਐͤ͞Δ׆ಈʣͷεϞʔϧΰʔϧݚ ڀՌΛࠪಡ͖จͱͯ͠ग़൛͢Δ͜ͱɽ • ࠪಡͰจͷॻ͖ํ͕νΣοΫ͞ΕΔʢʹΑ͘ॻ͚͍ͯΔ จʹՁ͕͋Δʣɽ • →ʮจͷॻ͖ํʯॏཁɽ •
·ͨจͷ໌ղ͞Λ্ͤ͞ΔաఔͰɼݚڀࣗମ͕લਐ͢Δɽ 6
2. จߘઌʹؔ͢Δجૅࣝ 7
ߘઌ จͷߘઌʹଟ͘ͷબࢶ͕͋Δɽ • ࠪಡɿࠪಡͷ༗ແ • ഔମɿจࢽɼձٞͷ༧ߘूɼϫʔΫγϣοϓͷ༧ߘू • ݴޠɿӳޠʢࠃࡍࢽɼձٞʣʀຊޠʢࠃࢽɼձٞʣ • Tierɿܝࡌจͷ࣭ɼࠪಡͷݫ͠͞
8
ࠪಡ • ࠪಡͷ༗ແɿجຊతʹࠪಡ͖จͷΈ͕Ҿ༻ͷରͱͳΔɽ ݴ͍͑Εɼࠪಡͳ͠ͷจʢྫ͑ࠃձٞͷ༧ߘʣҾ ༻ͷରͱͳΒͳ͍ɽ • ಗ໊ੑɿެਖ਼ੑͷͨΊɼDouble-blindʢೋॏݕʀஶऀͱࠪಡ ऀ͕͓ޓ͍ΛΒͳ͍ʣ Single-blindʢยଆݕʀஶऀଆͩ ͚ࠪಡऀΛΒͳ͍ʣͰࠪಡ͞ΕΔ͜ͱ͕ଟ͍ɽզʑ͕ߘ
͢Δจࢽࠃࡍձٞ΄ͱΜͲ double-blind peer reviewɽ 9
ഔମ • Journal Articleʢݪஶจʣɿ௨ৗจࢽʹ࠾͞Εͨจ ͕ݪஶจʢҰ࣍ࢿྉʣͱݟͳ͞ΕҾ༻ͷରͱͳΔɽ·ͨ ͬͱॏཁͳۀͱͳΔɽࠪಡϲ݄͔Βఔɽ • Proceedings Paperʢձٞ༧ߘʣɿଟ͘ͷʹ͓͍ͯձٞڝ ૪తͰͳ࣭͘୲อ͞Ε͓ͯΒͣۀʹͳΒͳ͍ɽ͔͠͠
ਝͳࠪಡΛॏΜ͡ΔܭࢉػՊֶͷҰ෦Ͱࠃࡍձٞڝ૪త ͔ͭ࠷ॏཁࢹ͞ΕΔɽNLPಛʹݦஶɽࠪಡ1ʙ2ϲ݄ఔɽ 10
ഔମ • Preprintɿग़൛લͷݪߘΛެ։͢ΔαʔϏεʢPreprint serverʀ యܕతʹ arXivʣ͕ۙΜʹΘΕ͍ͯΔɽૣΊͷެ։Ͱ ৽نੑΛओுͰ͖ɼ·ͨۀքશମͷݚڀαΠΫϧૣ·Δɽ ※ ࣭୲อ͞Εͣۄੴࠞ߹ɽʢҾ༻ʹΑΔ୲อՄೳʣ ※
Double-blind Ͱͷࠪಡ͕࣮࣭తʹෆՄೳʹͳΔ͋Δɽ ACLίϛϡχςΟɼߘ1ϲ݄લҎޙʹϓϨϓϦϯτΛެ։ࡁ ͷจΛෆ࠾ʹ͢Δࢫએݴɽ 11
ݴޠ • զʑͷۀքͰɼجຊతʹӳޠͰॻ͔ΕͨจͷΈ͕Ҿ༻ͷର ͱͳΔɽ • ͨͩ͠ࠃจࢽɾࠃձٞͷߘʹɼۀҎ֎ʹଟ͘ͷ Ձ͕͋Δɽ ✔ จͷܗʹ·ͱΊɼ·ͨଞେֶଞݚڀػؔͷݚڀऀ͔Βί ϝϯτΛΒ͏͜ͱͰɼݚڀΛਐΊΔྑ͍ػձʹͳΔɽ
✔ ࠃͷϓϨʔϠʔʢಛʹඇݚڀऀʣͷ༗༻ͳࢀরઌʹͳΔɽ 12
Tier • ࠪಡ͕ڝ૪తͰ࠾จͷ࣭͕ߴ͍ഔମͱͦ͏Ͱͳ͍ͷ͕͋ Δɽ׳ྫతʹڝ૪తͳॱʹTop (1st) Tier, 2nd Tier, ͱΑͿɽ •
Top Tier ͷจࢽɾձٞɼࠪಡऀͱͯ͠ۀܦݧͷ͋Δݚ ڀऀׂ͕ΓͯΒΕΔ͜ͱ͕ଟ͘ɼࠪಡίϝϯτ༗ӹɽ → ͳΔ͘ྑ͍ձٞʹग़͠·͠ΐ͏ɽ • ಡΈखͱͯ͠ Tier ͷߴ͍จࢽɾձ͔ٞΒαʔϕΠ͢Δͷ͕ ޮతɽ 13
ܭࢉػՊֶͷࠃࡍձٞͷྫ NLP AI ML; DM; ΄͔ 1st Tier पล͔Β ࢀর͞ΕΔ
ACL, EMNLP, NAACL AAAI, IJCAI NIPS, ICML; KDD, WSDM; WWW, SIGIR, CVPR, InterSpeech 2nd Tier ͔֘Β ࢀর͞ΕΔ EACL, COLING, IJCNLP, CoNLL UAI, ECAI AISTATS, ICLR; ICDM, ECMLPKDD, CIKM 14
Long Paper, Short Paper ࠃࡍձٞɼLong Paperʢ6ʙ8ϖʔδఔʣͱ Short Paperʢ4ʙ6ϖʔδఔʣΛબΔέʔε͕͋Δɽ • ҰൠʹɼLong
Paper ʹ࣮ݧߟͳͲ͕ेʹἧͬͨݚڀ ΛɼShort Paper ʹΞΠσΞҰൃ࣮ݧ͕ݶఆ͞ΕͨݚڀΛ ߘ͢Δɼͱ͞Ε͍ͯΔɽ • ҰൠʹɼLong Paper ͷํ͕ڝ૪తͰ࠾จͷߴ͍ɽ 15
Oral Presentation, Poster Presentation ࠃࡍձٞʹจ͕࠾͞ΕΔͱɼձٞͰݚڀͷ༰Λൃද͢Δػ ձ͕༩͑ΒΕΔɽൃදଟ͘ͷ߹ٛɽ • ൃදͷܗଶʹ Oral Presentationʢޱ಄ൃදʣͱ
Poster Presentationʢϙελʔൃදʣ͕͋ΔɽҰൠʹɼ࠾จͷൃ දͷܗଶओ࠵ऀଆ͔Βࢦࣔ͞ΕΔɽ • Ұൠʹɼจͷ࣭͕ߴ͘ଟ͘ͷௌऺ͕ظ͞ΕΔݚڀ͕ Oral Presentation ʹׂΓͯΒΕΔɽ 16
NLPʹ͓͚ΔΑ͋͘Δߘॱ 1. ࠃձٞɿຊޠɼࠪಡͳ͠ɽۀʹͳΒͳ͍ɽจԽͷػ ձɼଞݚڀऀͱٞ͢ΔػձʹɽݴޠॲཧֶձɼNLݚͳͲɽ ࠃࡍձٞซઃϫʔΫγϣοϓಉ༷ͷϝϦοτ͕͋Γɼਪɽ 2. ࠃࡍձٞɿӳޠɼࠪಡ͋Γɽ͕͜͜ओઓɽNLP12݄͔Β4 ݄ࠒ͕ߘγʔζϯɼ6݄͔Β9݄ࠒ͕ձٞγʔζϯɽ 3. จࢽɿΞΧσϛοΫͳจ຺ͰධՁΛड͚ΔࡍʹॏཁɽTACL
࠾͞ΕΔͱACL/EMNLP/NAACLͰൃදՄɽ 17
3. ࠓޙͷ Research Skills ษڧձ ΑΓΑ͘ॻ͚ΔΑ͏ʹͳΔͨΊʹ 18
ษڧձͷείʔϓ είʔϓ είʔϓ֎ Α͍ॻ͖͔ͨΛֶͿ Α͍ςʔϚઃఆΛֶͿ How to say What to
say ୡՄೳͳٕज़ ͓ؾ࣋ͪɼҙ 19
ษڧձͰѻ͏ςʔϚ • πʔϧͷ͍ํɿLaTeX ͷ Tips ؚΊͨࣥචڥɼϊϋ ɼKWIC ͷपลπʔϧ • ӳޠͷॻ͖ํɿจతɾ׳ྫతͳݴ͍ճ͠ɼΑ͋͘Δؒҧ͍
• Α͍ߏʹ͢ΔͨΊͷํ๏ɿoutline-driven writing • ΄͔ɿ༗ӹࢿྉͷڞ༗ɼ૬ޓࠪಡɼͳͲ 20