Upgrade to Pro — share decks privately, control downloads, hide ads and more …

Asynchronous Interaction Patterns for Mining Multi-Agent System Models from Event Logs

Asynchronous Interaction Patterns for Mining Multi-Agent System Models from Event Logs

MACSPro'2019 - Modeling and Analysis of Complex Systems and Processes, Vienna
21 - 23 March 2019

Roman Nesterov, Irina Lomazova

Conference website http://macspro.club/

Website https://exactpro.com/
Linkedin https://www.linkedin.com/company/exactpro-systems-llc
Instagram https://www.instagram.com/exactpro/
Twitter https://twitter.com/exactpro
Facebook https://www.facebook.com/exactpro/
Youtube Channel https://www.youtube.com/c/exactprosystems

Exactpro
PRO

March 22, 2019
Tweet

More Decks by Exactpro

Other Decks in Research

Transcript

  1. Asynchronous Interaction Patterns for Mining Multi-Agent
    System Models from Event Logs
    Roman A. Nesterov1,2, Irina A. Lomazova1

    1 National Research University Higher School Of Economics (Moscow, Russia)
    2 Università degli Studi di Milano-Bicocca (Milano, Italia)

    View Slide

  2. Outline
    ● Introduction
    ● Process Discovery for Multi-Agent Systems
    ● Service Interaction Patterns
    ● Modeling and Refining Service Interaction Patterns
    ● Experimental Evaluation
    ● Conclusion and Future Work
    2 / 16

    View Slide

  3. Process Discovery
    3 / 16

    View Slide

  4. Process Discovery
    ● Analysis of the observed behavior of information systems

    (ERP, BPM, HRM etc.).
    ● Construction of as-is (executable) process models from event logs.
    3 / 16

    View Slide

  5. Discovering Process Models From Logs of MAS
    ● Interaction of several independent agents ➝ sophisticated behavior.
    ● Model structure ➝ behavior of agents and their interaction.
    4 / 16

    View Slide

  6. Discovering Process Models From Logs of MAS
    t1
    t2
    s1
    t4
    t3
    r11
    r12
    t5
    t6
    t7
    t8
    t9
    q1
    q2
    r21
    r22
    s21
    s22
    q4
    q3
    q5
    q6
    q7
    q8
    4 / 16
    N

    View Slide

  7. Discovering Process Models From Logs of MAS
    t1
    t2
    s1
    t4
    t3
    r11
    r12
    t5
    t6
    t7
    t8
    t9
    q1
    q2
    r21
    r22
    s21
    s22
    q4
    q3
    q5
    q6
    q7
    q8
    4 / 16
    1. Simulate N and obtain an event log L.
    2. Rediscover a model directly from L.
    N

    View Slide

  8. Discovering Process Models From Logs of MAS
    t1
    t2
    s1
    t4
    t3
    r11
    r12
    t5
    t6
    t7
    t8
    t9
    q1
    q2
    r21
    r22
    s21
    s22
    q4
    q3
    q5
    q6
    q7
    q8
    4 / 16
    N N*

    View Slide

  9. Discovering Process Models From Logs of MAS
    t1
    t2
    s1
    t4
    t3
    r11
    r12
    t5
    t6
    t7
    t8
    t9
    q1
    q2
    r21
    r22
    s21
    s22
    q4
    q3
    q5
    q6
    q7
    q8
    Two models of the

    same system
    4 / 16
    N*

    View Slide

  10. Compositional Process Discovery*
    ● System model is composed from agent models guided by a specification of
    their asynchronous interaction.
    ● System model preserves properties of agent behavior.
    ● System model structure explicitly indicates interaction.
    ● Channel-composition of generalized workflow nets.
    ● Abstraction/refinement via -morphisms on Petri nets.
    α
    5 / 16
    * Bernardinello L., Lomazova I., Nesterov R., Pomello L. Compositional Discovery
    of Workflow Nets from Event Logs Using Morphisms (ATAED 2018).

    View Slide

  11. Service Interaction Patterns*
    ● A Systematic approach to the problem of modeling complex interactions.
    ● They describe typical ways of interactions.
    ● They describe agent interactions at the abstract level.

    6 / 16
    * Barros A. et al. Service Interaction Patterns (BPM 2005).
    * Campagna D. Et al. BPMN 2.0 and the Service Interaction Patterns… (ICSOFT 2014).

    View Slide

  12. Service Interaction Patterns
    ● A Systematic approach to the problem of modeling complex interactions.
    ● They describe typical ways of interactions.
    ● They describe agent interactions at the abstract level.
    ● Bilateral/Multilateral interaction patterns.
    ● Single/Multiple transmission patterns.
    6 / 16

    View Slide

  13. Service Interaction Patterns
    ● A Systematic approach to the problem of modeling complex interactions.
    ● They describe typical ways of interactions.
    ● They describe agent interactions at the abstract level.
    ● Bilateral/Multilateral interaction patterns;
    ● Single/Multiple transmission patterns.
    6 / 16

    View Slide

  14. Bilateral Asynchronous Service Interaction Patterns
    7 / 16

    View Slide

  15. Bilateral Asynchronous Service Interaction Patterns
    Pattern Description
    Send (Receive) SIP-1 An agent X sends (receives) a message to (from) an agent Y.
    Concurrent Send (Receive) SIP-2
    An agent X concurrently sends (receives) several messages (>1) to
    (from) an agent Y.
    Sending (Receiving) Choice SIP-3
    An agent X sends (receives) exactly one out of two (or more)
    alternative message sets to (from) an agent Y.
    Send+Receive SIP-4
    An agent X sends a message to an agent Y. Subsequently, Y sends a
    response to X.
    Concurrent Send+Receive SIP-5
    An agent X concurrently sends several messages (>1) to an agent Y.
    Then Y sends a response to each message received from X.
    Sending+Receiving Choice SIP-6
    An agent X sends exactly one out of two (or more) alternative message
    sets to an agent Y . Subsequently, Y sends a corresponding response
    to a message received from X.
    Multiple Send+Receive SIP-7
    The iterative implementation of SIP-4, s.t. message exchange process
    continues till an Agent X does not need responses from an Agent Y.
    7 / 16

    View Slide

  16. Generalized Workflow Nets
    A GWF-net is a quintuple , where:
    • is a Petri net,
    • is an initial state and
    • is a final state.
    N = (P, T, F, m0
    , mf
    )
    m0
    ⊆ P
    (P, T, F)
    mf
    ⊆ P
    8 / 16

    View Slide

  17. Generalized Workflow Nets
    • a bipartite graph,
    • an (initial) state is indicated by putting
    tokens inside places,
    t1
    t5
    t2
    t6
    t4
    t3
    t8
    t7
    transition
    place
    initial state
    final state
    8 / 16

    View Slide

  18. Generalized Workflow Nets
    • a bipartite graph,
    • an (initial) state is indicated by putting
    tokens inside places,
    • transition firings change a system state.
    t1
    t5
    t2
    t6
    t4
    t3
    t8
    t7
    transition
    place
    initial state
    final state
    8 / 16

    View Slide

  19. Generalized Workflow Nets
    A GWF-net is a quintuple , where:
    • is a Petri net,
    • is an initial state and
    • is a final state.
    A GWF-net is sound if and only if:
    • a final state is reachable from any reachable state (proper termination),
    • whenever a final state is reached, no tokens are left in other places (clean
    termination),
    • every transition has the ability to fire (no "dead" transitions).
    N = (P, T, F, m0
    , mf
    )
    m0
    ⊆ P
    (P, T, F)
    mf
    ⊆ P
    8 / 16

    View Slide

  20. GWF-nets for Bilateral Interaction Patterns
    s r s1
    s2
    r1
    r2
    s1
    r2
    r1
    s2
    s11
    s12
    r21
    r22
    r11
    r12
    s21
    s22
    s11
    s12
    r21
    r22
    r11
    r12
    s21
    s22
    s12
    r22
    r11
    s11
    s21
    r21
    s1
    s2
    r1
    r2
    SIP-1
    SIP-2 SIP-3 SIP-4
    SIP-5 SIP-6
    SIP-7
    9 / 16

    View Slide

  21. Refining Send+Receive Pattern (SIP-4)
    s1
    r2
    r1
    s2
    10 / 16

    View Slide

  22. Refining Send+Receive Pattern (SIP-4)
    s1
    r2
    r1
    s2
    N1
    N2
    10 / 16

    View Slide

  23. Refining Send+Receive Pattern (SIP-4)
    s1
    r2
    r1
    s2
    N1
    N2
    N1
    ⊕C
    N2
    10 / 16

    View Slide

  24. Refining Send+Receive Pattern (SIP-4)
    N1
    ⊕C
    N2
    s1
    r1
    t1
    t2
    s1
    t4
    t3
    r11
    r12
    t5
    t6
    t7
    t8
    t9
    '
    AAACynicjVHLSsNAFD2Nr/quunQTLIKrkIigy4IbFy4q2Ae0RSbptB2aF5NJoRR3/oBb/TDxD/QvvDOmoBbRCUnOnHvOnbn3+mkoMuW6ryVraXllda28vrG5tb2zW9nbb2ZJLgPeCJIwkW2fZTwUMW8ooULeTiVnkR/ylj++1PHWhMtMJPGtmqa8F7FhLAYiYIqoVnfCZDoSd5Wq67hm2YvAK0AVxaonlRd00UeCADkicMRQhEMwZPR04MFFSlwPM+IkIWHiHPfYIG9OKk4KRuyYvkPadQo2pr3OmRl3QKeE9Epy2jgmT0I6SVifZpt4bjJr9rfcM5NT321Kf7/IFRGrMCL2L99c+V+frkVhgAtTg6CaUsPo6oIiS266om9uf6lKUYaUOI37FJeEA+Oc99k2nszUrnvLTPzNKDWr90GhzfGub0kD9n6OcxE0Tx3Pdbybs2rNKUZdxiGOcELzPEcNV6ijYap8xBOerWtLWlNr9im1SoXnAN+W9fABFfeSEw==
    AAACynicjVHLSsNAFD2Nr/quunQTLIKrkIigy4IbFy4q2Ae0RSbptB2aF5NJoRR3/oBb/TDxD/QvvDOmoBbRCUnOnHvOnbn3+mkoMuW6ryVraXllda28vrG5tb2zW9nbb2ZJLgPeCJIwkW2fZTwUMW8ooULeTiVnkR/ylj++1PHWhMtMJPGtmqa8F7FhLAYiYIqoVnfCZDoSd5Wq67hm2YvAK0AVxaonlRd00UeCADkicMRQhEMwZPR04MFFSlwPM+IkIWHiHPfYIG9OKk4KRuyYvkPadQo2pr3OmRl3QKeE9Epy2jgmT0I6SVifZpt4bjJr9rfcM5NT321Kf7/IFRGrMCL2L99c+V+frkVhgAtTg6CaUsPo6oIiS266om9uf6lKUYaUOI37FJeEA+Oc99k2nszUrnvLTPzNKDWr90GhzfGub0kD9n6OcxE0Tx3Pdbybs2rNKUZdxiGOcELzPEcNV6ijYap8xBOerWtLWlNr9im1SoXnAN+W9fABFfeSEw==
    AAACynicjVHLSsNAFD2Nr/quunQTLIKrkIigy4IbFy4q2Ae0RSbptB2aF5NJoRR3/oBb/TDxD/QvvDOmoBbRCUnOnHvOnbn3+mkoMuW6ryVraXllda28vrG5tb2zW9nbb2ZJLgPeCJIwkW2fZTwUMW8ooULeTiVnkR/ylj++1PHWhMtMJPGtmqa8F7FhLAYiYIqoVnfCZDoSd5Wq67hm2YvAK0AVxaonlRd00UeCADkicMRQhEMwZPR04MFFSlwPM+IkIWHiHPfYIG9OKk4KRuyYvkPadQo2pr3OmRl3QKeE9Epy2jgmT0I6SVifZpt4bjJr9rfcM5NT321Kf7/IFRGrMCL2L99c+V+frkVhgAtTg6CaUsPo6oIiS266om9uf6lKUYaUOI37FJeEA+Oc99k2nszUrnvLTPzNKDWr90GhzfGub0kD9n6OcxE0Tx3Pdbybs2rNKUZdxiGOcELzPEcNV6ijYap8xBOerWtLWlNr9im1SoXnAN+W9fABFfeSEw==
    AAACynicjVHLSsNAFD2Nr1pfVZdugkVwFRI3uiy4ceGign1AWyRJp+3QvJhMCqW48wfc6oeJf6B/4Z1xCmoRnZDkzLnn3Jl7b5BFPJeu+1qyVlbX1jfKm5Wt7Z3dver+QStPCxGyZphGqegEfs4inrCm5DJinUwwPw4i1g4mlyrenjKR8zS5lbOM9WN/lPAhD31JVLs39UU25nfVmuu4etnLwDOgBrMaafUFPQyQIkSBGAwJJOEIPnJ6uvDgIiOujzlxghDXcYZ7VMhbkIqRwid2Qt8R7bqGTWivcubaHdIpEb2CnDZOyJOSThBWp9k6XujMiv0t91znVHeb0T8wuWJiJcbE/uVbKP/rU7VIDHGha+BUU6YZVV1oshS6K+rm9peqJGXIiFN4QHFBONTORZ9t7cl17aq3vo6/aaVi1T402gLv6pY0YO/nOJdB68zxXMe7OavVHTPqMo5wjFOa5znquEIDTV3lI57wbF1bwppZ80+pVTKeQ3xb1sMHFVeSEQ==
    N1
    N'1
    φ: N′
    1
    → N1
    s1
    r2
    r1
    s2
    N1
    N2
    10 / 16

    View Slide

  25. Refining Send+Receive Pattern (SIP-4)
    N1
    ⊕C
    N2
    s1
    r1
    t1
    t2
    s1
    t4
    t3
    r11
    r12
    t5
    t6
    t7
    t8
    t9
    '
    AAACynicjVHLSsNAFD2Nr/quunQTLIKrkIigy4IbFy4q2Ae0RSbptB2aF5NJoRR3/oBb/TDxD/QvvDOmoBbRCUnOnHvOnbn3+mkoMuW6ryVraXllda28vrG5tb2zW9nbb2ZJLgPeCJIwkW2fZTwUMW8ooULeTiVnkR/ylj++1PHWhMtMJPGtmqa8F7FhLAYiYIqoVnfCZDoSd5Wq67hm2YvAK0AVxaonlRd00UeCADkicMRQhEMwZPR04MFFSlwPM+IkIWHiHPfYIG9OKk4KRuyYvkPadQo2pr3OmRl3QKeE9Epy2jgmT0I6SVifZpt4bjJr9rfcM5NT321Kf7/IFRGrMCL2L99c+V+frkVhgAtTg6CaUsPo6oIiS266om9uf6lKUYaUOI37FJeEA+Oc99k2nszUrnvLTPzNKDWr90GhzfGub0kD9n6OcxE0Tx3Pdbybs2rNKUZdxiGOcELzPEcNV6ijYap8xBOerWtLWlNr9im1SoXnAN+W9fABFfeSEw==
    AAACynicjVHLSsNAFD2Nr/quunQTLIKrkIigy4IbFy4q2Ae0RSbptB2aF5NJoRR3/oBb/TDxD/QvvDOmoBbRCUnOnHvOnbn3+mkoMuW6ryVraXllda28vrG5tb2zW9nbb2ZJLgPeCJIwkW2fZTwUMW8ooULeTiVnkR/ylj++1PHWhMtMJPGtmqa8F7FhLAYiYIqoVnfCZDoSd5Wq67hm2YvAK0AVxaonlRd00UeCADkicMRQhEMwZPR04MFFSlwPM+IkIWHiHPfYIG9OKk4KRuyYvkPadQo2pr3OmRl3QKeE9Epy2jgmT0I6SVifZpt4bjJr9rfcM5NT321Kf7/IFRGrMCL2L99c+V+frkVhgAtTg6CaUsPo6oIiS266om9uf6lKUYaUOI37FJeEA+Oc99k2nszUrnvLTPzNKDWr90GhzfGub0kD9n6OcxE0Tx3Pdbybs2rNKUZdxiGOcELzPEcNV6ijYap8xBOerWtLWlNr9im1SoXnAN+W9fABFfeSEw==
    AAACynicjVHLSsNAFD2Nr/quunQTLIKrkIigy4IbFy4q2Ae0RSbptB2aF5NJoRR3/oBb/TDxD/QvvDOmoBbRCUnOnHvOnbn3+mkoMuW6ryVraXllda28vrG5tb2zW9nbb2ZJLgPeCJIwkW2fZTwUMW8ooULeTiVnkR/ylj++1PHWhMtMJPGtmqa8F7FhLAYiYIqoVnfCZDoSd5Wq67hm2YvAK0AVxaonlRd00UeCADkicMRQhEMwZPR04MFFSlwPM+IkIWHiHPfYIG9OKk4KRuyYvkPadQo2pr3OmRl3QKeE9Epy2jgmT0I6SVifZpt4bjJr9rfcM5NT321Kf7/IFRGrMCL2L99c+V+frkVhgAtTg6CaUsPo6oIiS266om9uf6lKUYaUOI37FJeEA+Oc99k2nszUrnvLTPzNKDWr90GhzfGub0kD9n6OcxE0Tx3Pdbybs2rNKUZdxiGOcELzPEcNV6ijYap8xBOerWtLWlNr9im1SoXnAN+W9fABFfeSEw==
    AAACynicjVHLSsNAFD2Nr1pfVZdugkVwFRI3uiy4ceGign1AWyRJp+3QvJhMCqW48wfc6oeJf6B/4Z1xCmoRnZDkzLnn3Jl7b5BFPJeu+1qyVlbX1jfKm5Wt7Z3dver+QStPCxGyZphGqegEfs4inrCm5DJinUwwPw4i1g4mlyrenjKR8zS5lbOM9WN/lPAhD31JVLs39UU25nfVmuu4etnLwDOgBrMaafUFPQyQIkSBGAwJJOEIPnJ6uvDgIiOujzlxghDXcYZ7VMhbkIqRwid2Qt8R7bqGTWivcubaHdIpEb2CnDZOyJOSThBWp9k6XujMiv0t91znVHeb0T8wuWJiJcbE/uVbKP/rU7VIDHGha+BUU6YZVV1oshS6K+rm9peqJGXIiFN4QHFBONTORZ9t7cl17aq3vo6/aaVi1T402gLv6pY0YO/nOJdB68zxXMe7OavVHTPqMo5wjFOa5znquEIDTV3lI57wbF1bwppZ80+pVTKeQ3xb1sMHFVeSEQ==
    N1
    N'1
    φ: N′
    1
    → N1
    s1
    r2
    r1
    s2
    N1
    N2
    t1
    t2
    s1
    t4
    t3
    r11
    r12
    t5
    t6
    t7
    t8
    t9
    q1
    q2
    r21
    r22
    s21
    s22
    q4
    q3
    q5
    q6
    q7
    q8
    N'1 N'2
    10 / 16

    View Slide

  26. Refining Send+Receive Pattern (SIP-4)
    N1
    ⊕C
    N2
    s1
    r2
    r1
    s2
    N1
    N2
    t1
    t2
    s1
    t4
    t3
    r11
    r12
    t5
    t6
    t7
    t8
    t9
    q1
    q2
    r21
    r22
    s21
    s22
    q4
    q3
    q5
    q6
    q7
    q8
    N'1 N'2
    N1
    ⊕C
    N2
    sound
    N′
    1
    ⊕C
    N′
    2
    sound
    φi
    : N′
    i
    → Ni
    10 / 16

    View Slide

  27. Experimental Evaluation: Layout
    ABCDG
    HIJKLNOP
    QRSTUVW
    XYZACDEH
    IJKLMN…
    System
    event log
    ABCILOR
    TUXYAD
    EJKLN…
    DGHJKN
    PQSVWZ
    CHIM…
    Agent 1
    event log
    Agent 2
    event log
    filter
    B

    … …
    D G
    … …

    discover
    D
    B
    Agent 2
    behavior
    Agent 1
    behavior
    Interface
    D G
    … …

    B

    … …
    compose
    Complete system model
    SIPs
    S W
    … …

    A

    … …
    System
    simulate
    instantiate
    O G
    … …

    U

    … …
    N


    discover
    Directly discovered system model
    Compare
    quality
    11 / 16

    View Slide

  28. Experimental Evaluation: Neighboring Transitions
    Let be a GWF-net and .
    Two transitions are called neighboring iff there is a path in
    connecting them, where other transitions along this path are silent.
    N = (P, T, F, m0
    , mf
    ) λ : T → L ∪ {τ}
    t1
    , t2
    (λ(ti
    ) ≠ τ) N
    12 / 16

    View Slide

  29. Experimental Evaluation: Neighboring Transitions
    Let be a GWF-net and .
    Two transitions are called neighboring iff there is a path in
    connecting them, where other transitions along this path are silent.
    Let , s.t. .
    denotes the number of neighboring transition pairs in .
    Symmetric pairs are counted as a single one.
    N = (P, T, F, m0
    , mf
    ) λ : T → L ∪ {τ}
    t1
    , t2
    (λ(ti
    ) ≠ τ) N
    T = T1
    ∪ T2
    T1
    ∩ T2
    = Ø
    NbN
    (T1
    × T2
    ) ∪ (T2
    × T1
    )
    12 / 16

    View Slide

  30. Experimental Evaluation: Neighboring Transitions
    Let be a GWF-net and .
    Two transitions are called neighboring iff there is a path in
    connecting them, where other transitions along this path are silent.
    N = (P, T, F, m0
    , mf
    ) λ : T → L ∪ {τ}
    t1
    , t2
    (λ(ti
    ) ≠ τ) N
    t1
    t2
    t3
    q1
    q2
    q3
    q4
    t2
    t1
    q1
    q2
    q3
    t3
    12 / 16

    View Slide

  31. Experimental Evaluation: Instruments
    • Agent model discovery and event log filtration:

    ProM and Inductive Miner
    • Artificial event log generation:

    ProM plug-in GENA (extended with MAS simulation)*
    In our experiments, artificial event logs contain 5000 traces.
    13 / 16
    * Nesterov R.A., Mitsyuk A.A., Lomazova I.A. Simulating Behavior of Multi-Agent Systems
    with Acyclic Interactions of Agents // Proceedings of the ISP RAS. 2018.

    View Slide

  32. Experimental Evaluation: Results
    SIP-1 SIP-2 SIP-3 SIP-4 SIP-5 SIP-6 SIP-7
    Direct Discovery
    Places 35 59 42 49 64 72 29
    Transitions 41 60 66 46 69 84 34
    Arcs 98 140 112 120 170 198 78
    NbN 22 95 25 61 85 117 22
    Precision 0,689 0,5646 0,7768 0,6733 0,4554 0,6586 0,6495
    Compositional Discovery
    Places 33 55 35 46 69 66 29
    Transitions 32 49 35 39 57 72 28
    Arcs 76 133 86 102 155 157 72
    NbN 4 6 6 4 7 14 12
    Precision 0,8017 0,4477 0,8162 0,6745 0,4342 0,8414 0,8500
    14 / 16

    View Slide

  33. Experimental Evaluation: Results
    SIP-1 SIP-2 SIP-3 SIP-4 SIP-5 SIP-6 SIP-7
    Direct Discovery
    Places 35 59 42 49 64 72 29
    Transitions 41 60 66 46 69 84 34
    Arcs 98 140 112 120 170 198 78
    NbN 22 95 25 61 85 117 22
    Precision 0,689 0,5646 0,7768 0,6733 0,4554 0,6586 0,6495
    Compositional Discovery
    Places 33 55 35 46 69 66 29
    Transitions 32 49 35 39 57 72 28
    Arcs 76 133 86 102 155 157 72
    NbN 4 6 6 4 7 14 12
    Precision 0,8017 0,4477 0,8162 0,6745 0,4342 0,8414 0,8500
    14 / 16

    View Slide

  34. Experimental Evaluation: Results
    • Compositionally discovered models are more compact with respect to the
    number of nodes.
    • Precision of composed models is mainly higher in comparison with directly
    discovered models.
    • The number of neighboring transition pairs are minimized to the number of
    transition pairs involved in the asynchronous agent interaction.
    14 / 16

    View Slide

  35. Conclusion and Future Work Directions
    • Formal models for service interaction patterns (SIPs) — (channel-composed)
    generalized workflow nets.
    • The illustration to the formal compositional approach to process discovery —
    refinement of abstract interaction patterns.
    • The overall experimental results demonstrates the value of the compositional
    approach.
    • Multilateral interaction patterns,
    • Systematic approach to constructing morphisms,
    • Improvement of the metric based on the notion of neighboring transitions.
    15 / 16

    View Slide

  36. Thank you for your
    attention!
    Roman A. Nesterov,

    [email protected]; [email protected]
    16 / 16

    View Slide