Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
ZOZOTOWNでの推薦システム活用事例の紹介
Search
tera
November 04, 2024
Technology
1
1.8k
ZOZOTOWNでの推薦システム活用事例の紹介
2024/10/28 @生成AI Conf - AIレコメンドシステムの最前線を語る
tera
November 04, 2024
Tweet
Share
More Decks by tera
See All by tera
ZOZOTOWNのホーム画面をパーソナライズすることの難しさと裏話を語る
f6wbl6
1
2k
Other Decks in Technology
See All in Technology
機密情報の漏洩を防げ! Webフロントエンド開発で意識すべき漏洩パターンとその対策
mizdra
PRO
9
3.5k
JavaScript パーサーに using 対応をする過程で与えたエコシステムへの影響
baseballyama
1
100
LINEヤフー バックエンド組織・体制の紹介
lycorptech_jp
PRO
0
750
【M3】攻めのセキュリティの実践!プロアクティブなセキュリティ対策の実践事例
axelmizu
0
160
Flutterで実装する実践的な攻撃対策とセキュリティ向上
fujikinaga
2
430
旧から新へ: 大規模ウェブクローラの Perl から Go への移行 / YAPC::Fukuoka 2025
motemen
3
930
"おまじない"はもう卒業! デバッガで探るSpring Bootの裏側と「学び方」の学び方
takeuchi_132917
0
170
Flutterにしてよかった?出前館アプリを2年運用して気づいたことを全部話します
demaecan
0
210
[mercari GEARS 2025] なぜメルカリはノーコードを選ばなかったのか? 社内問い合わせ工数を60%削減したLLM活用の裏側
mercari
PRO
0
110
バフェットコード株式会社 開発チームカルチャーデック
shoe116
1
100
マイクロリブート ~ACEマインドセットで実現するアジャイル~
sony
1
390
レビュー負債を解消する ― CodeRabbitが支えるAI駆動開発
moongift
PRO
0
400
Featured
See All Featured
Easily Structure & Communicate Ideas using Wireframe
afnizarnur
194
17k
Agile that works and the tools we love
rasmusluckow
331
21k
jQuery: Nuts, Bolts and Bling
dougneiner
65
8k
Code Review Best Practice
trishagee
72
19k
Scaling GitHub
holman
463
140k
A better future with KSS
kneath
239
18k
GraphQLの誤解/rethinking-graphql
sonatard
73
11k
Learning to Love Humans: Emotional Interface Design
aarron
274
41k
Facilitating Awesome Meetings
lara
57
6.6k
Building a Modern Day E-commerce SEO Strategy
aleyda
45
8.1k
The Power of CSS Pseudo Elements
geoffreycrofte
80
6.1k
Thoughts on Productivity
jonyablonski
73
4.9k
Transcript
ZOZOTOWNでの推薦システム 活用事例の紹介 株式会社ZOZO 技術本部 データシステム部 推薦基盤ブロック ブロック長 寺崎 優希 Copyright
© ZOZO, Inc. 1 2024/10/28 @生成AI Conf - AIレコメンドシステムの最前線を語る
© ZOZO, Inc. 株式会社ZOZO 技術本部 データシステム部 推薦基盤ブロック ブロック長 技術本部 データサイエンス部
推薦研究ブロック ブロック長 寺崎 優希 最高のZOZOTOWNを作るために2つの推薦系チームの リーダーを兼務しています。 先々週RecSys2024 in Bariに参加して推薦システムの最 先端に触れてきました。 趣味は鳥貴族です。 2 渡航前日に購入したネックピローで快眠している図
© ZOZO, Inc. https://zozo.jp/ 3 • ファッションEC • 1,600以上のショップ、9,000以上のブランドの取り扱い •
常時102万点以上の商品アイテム数と毎日平均2,600点以上の新着 商品を掲載(2024年6月末時点) • ブランド古着のファッションゾーン「ZOZOUSED」や コスメ専門モール「ZOZOCOSME」、シューズ専門ゾーン 「ZOZOSHOES」、ラグジュアリー&デザイナーズゾーン 「ZOZOVILLA」を展開 • 即日配送サービス • ギフトラッピングサービス • ツケ払い など
© ZOZO, Inc. 4 本日お話しすること・しないこと 話すこと • ZOZOTOWN にまつわる推薦システムの変遷 •
様々な推薦システムの開発に至った経緯など 話さないこと • 推薦システムの技術的な話 ◦ (例). 使用している ML モデルの詳細, システムアーキテクチャの詳細, etc.
© ZOZO, Inc. 5 ZOZOTOWNの推薦システム3選 1. 商品詳細面おすすめアイテム枠 2. ホーム面モジュール 3.
マーケティングオートメーション(MA)
© ZOZO, Inc. 6 ZOZOTOWNの推薦システム3選 1. 商品詳細面おすすめアイテム枠 2. ホーム面モジュール 3.
マーケティングオートメーション(MA)
© ZOZO, Inc. 7 1. 商品詳細面おすすめアイテム枠 - 機能概要 • ZOZOTOWN内の商品を押下した際の遷
移先ページの下部にある枠のこと • おすすめアイテム枠では詳細面で表示さ れている商品に基づく推薦商品が表示さ れる Scroll アプリ商品詳細面の例
© ZOZO, Inc. 8 1. 商品詳細面おすすめアイテム枠 - 考慮事項 • クエリ商品とユーザー行動ログを使って
おすすめアイテムを推薦する際に考慮す ることは多岐に渡る ◦ 最適化する指標と KPI ◦ 推薦アイテムの更新頻度 ◦ コールドスタートアイテムの取り扱い ◦ システム導入・運用コスト ◦ 秒間あたりのリクエスト数 ◦ レイテンシ ◦ etc. • ユーザーID • 過去に閲覧した商品のID等 クエリ商品 ユーザー行動ログ おすすめアイテム
© ZOZO, Inc. 9 1. 商品詳細面おすすめアイテム枠 - 推薦モデル変遷 • 〜2019年
◦ ルールベースの推薦ロジックをクエリで構築 ◦ バックエンドチームで管理する API で運用 • 2020年 ◦ 推薦モデルのML化を開始・ABテスト実施 w/Google Cloud ◦ 内製モデルの開発も開始 • 2021年 ◦ ABテストを繰り返すも鳴かず飛ばず • 2022年 ◦ Recommendations-AIをPC/SPに100%リリース • 2023年 ◦ Recommendations-AIをアプリに100%リリース • 2024年 ◦ 内製モデルをフォールバック用のモデルとして100%リリース
© ZOZO, Inc. 10 ZOZOTOWNの推薦システム3選 1. 商品詳細面おすすめアイテム枠 2. ホーム面モジュール 3.
マーケティングオートメーション(MA)
© ZOZO, Inc. 11 2. ホーム面モジュール - 機能概要 • ZOZOTOWNを起動した時に最初に開か
れるページ • モジュールと呼ばれる単位で施策ごとの 商品をグルーピングしている • ホーム面上部のモールタブと性別タブの 組み合わせで表示されるモジュールが異 なる モジュール scroll モール 性別
© ZOZO, Inc. 12 2. ホーム面モジュール - パーソナライズ内容 大きく分けて以下の2パターン 1.
モジュール内に表示される商品のパーソナライズ 2. モジュールの並び順をパーソナライズ
© ZOZO, Inc. 13 2. ホーム面モジュール - パーソナライズ内容 大きく分けて以下の2パターン 1.
モジュール内に表示される商品のパーソナライズ 2. モジュールの並び順をパーソナライズ 今人気のマストバイアイテム!! ユーザーA ユーザーB 今人気のマストバイアイテム!! 同じモジュール(=商品の訴求軸)でも 表示される商品がユーザーごとに異なる ・トレンドアイテム全般を好むユーザーAには広く浅く ・最近メガネを探しているユーザーBにはメガネや小物系を
© ZOZO, Inc. 14 2. ホーム面モジュール - パーソナライズ内容 大きく分けて以下の2パターン 1.
モジュール内に表示される商品のパーソナライズ 2. モジュールの並び順をパーソナライズ 今人気のマストバイアイテム!! ユーザーA ユーザーごとに表示されるモジュールと 並び順を変える ・トレンドアイテム全般を好むユーザーAにはトレンドを 押さえたモジュール ・小物をよく閲覧するユーザーBには雑貨系のモジュール いま羽織りたいライトアウター おうち時間を楽しむインテリア ユーザーB 今人気のマストバイアイテム!!
© ZOZO, Inc. 15 2. ホーム面モジュール - 事例1 • モジュール内に表示される商品のカテゴリーとブランドをパーソナライズ
• アップデートを加える度にA/Bテストを行い現在の形に 商品検索条件に推薦カテゴリー による絞り込みを決定 商品検索条件に推薦ブランドに よる絞り込みを追加 ルールベースによる 行動ログの集計 ML モデルによる 推薦ブランドの予測 ※上記はイメージ画像です チェックしたカテゴリーのおすすめアイテム ソックス/靴下 カテゴリー ブランド
© ZOZO, Inc. 16 2. ホーム面モジュール - 事例2 • ユーザーごとにモジュールが表示される順序をパーソナライズ
◦ サイト上に表示できるモジュール数には限りがあるため、N 件ある表示候補モジュールの中 から k 件選んでいる 今人気のマストバイアイテム!! いま羽織りたいライトアウター … • 今人気のマストバイアイテム!! • いま羽織りたいライトアウター • 着回し力抜群の厳選トップス • 秋冬カラーの注目アイテム • … 表示候補モジュール モジュール企画チーム 企画 & 入稿 計50件程度 ユーザー ZOZOTOWN上での 行動ログ データベース MLモデル 最適な 並び順を予測 計30~40件程度
© ZOZO, Inc. 17 ZOZOTOWNの推薦システム3選 1. 商品詳細面おすすめアイテム枠 2. ホーム面モジュール 3.
マーケティングオートメーション(MA)
© ZOZO, Inc. 18 3. マーケティングオートメーション(MA) - 概要 • メールやLINE、プッシュ通知等のコンテンツをパーソナライズする
• 役割分担は以下の通り ◦ コンテンツのパーソナライズ:推薦チーム ◦ 配信処理:MAチーム • 配信タイミングもユーザーごとにパーソナライズされている クーポンメールの イメージ
© ZOZO, Inc. 19 3. マーケティングオートメーション(MA) - 事例 運用されている推薦システムの一例 •
シューズアイテム推薦 ◦ シューズコンテンツを訴求 • ラグジュアリーアイテム推薦 ◦ ZOZOVILLA (ラグジュアリーアイテム) のコンテンツを訴求 • コスメアイテム推薦 ◦ コスメコンテンツを訴求 • クーポンショップ推薦 ◦ クーポン対象となっているショップを訴求 etc.
© ZOZO, Inc. 20 ZOZOTOWNの推薦システム年表 2019年 商品詳細面おすすめアイテム枠 ・推薦モデル導入検討開始 2020年 2021年
ホーム面 ・モジュール推薦用APIリリース MAシステム ・シューズ推薦リリース ・ラグジュアリアイテム推薦リリース 商品詳細面おすすめアイテム枠 ・内製モデル開発開始 ・A/Bテスト開始、長き戦いの始まり MAシステム ・推薦モデル開発開始 ・リテンション最適化モデルリリース 2022年 商品詳細面おすすめアイテム枠 ・Recommendations-AI リリース(PC/SP) ホーム面 ・第1弾パーソナライズモジュールリリース ・第2弾パーソナライズモジュールリリース MAシステム ・コスメ推薦リリース 2023年 商品詳細面おすすめアイテム枠 ・Recommendations-AI リリース(App) ホーム面 ・第3弾パーソナライズモジュールリリース MAシステム ・クーポンメール推薦リリース 2024年 商品詳細面おすすめアイテム枠 ・内製モデルリリース(for fallback) ホーム面 ・モジュール並び順パーソナライズリリース 20XX年 To Be Continued…
© ZOZO, Inc. 21 今後のZOZOTOWNの推薦システムが向かう先 • Beyond-accuracy metrics (e.g. 多様性,
新規性, etc.) を追求 ◦ ホーム面・商品詳細面など全ての場所で CTR 最適を目指せば良いのか? ◦ CTR 最適を目指したリターゲティング偏重な推薦は最高の UX か? • WEAR のデータを活用したクロスプラットフォーム・マルチドメイン推薦 ◦ ZOZOTOWN 上でのコーディネートの推薦・パーソナライズ ▪ いわゆる「こちらもいかがでしょうか?」でコーディネートを完成させる ▪ ZOZONEXT の「似合う」の研究と地続きにある • LLM による推薦体験の変革 ◦ e.g. サイト上の行動ログを元にユーザーのコンテキストを LLM で解釈する ▪ 検索機能との境界が曖昧になっていく
None