Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
The advantages and disadvantages of using machi...
Search
h-fkn
November 04, 2020
Programming
0
260
The advantages and disadvantages of using machine learning with enebular
【オンライン】ゆるふわマシンラーニング vol.5 - connpass
https://enebular.connpass.com/event/188257/
登壇資料
h-fkn
November 04, 2020
Tweet
Share
More Decks by h-fkn
See All by h-fkn
ラズパイで写真を撮った話_IoTLT_vol.66_2200812.pdf
fkn0839
0
410
俺のNETFLIX season2 AmazonPersonalize
fkn0839
0
480
俺のNETFLIX season1
fkn0839
0
250
ゆるふわマシーンラーニング#2_内容調整中()
fkn0839
0
300
ゆるふわマシーンラーニング「❝ Google AutoML Tablesでお手軽AI ❞と題して話すつもりだったけど、実際に使ったらお手軽()だった件について5分以内で話す」
fkn0839
1
4.1k
データ分析プロセス/AIアプリケーションの基本設計
fkn0839
0
190
DataScienceBOOTCAMP5th_part1
fkn0839
0
1.9k
G'SACADEMY LAB5th DataScience
fkn0839
0
210
AIアプリ開発に「目的設定」が大切な理由
fkn0839
0
140
Other Decks in Programming
See All in Programming
Design Foundational Data Engineering Observability
sucitw
3
200
プロポーザル駆動学習 / Proposal-Driven Learning
mackey0225
2
1.3k
print("Hello, World")
eddie
2
530
機能追加とリーダー業務の類似性
rinchoku
2
1.3k
時間軸から考えるTerraformを使う理由と留意点
fufuhu
16
4.8k
為你自己學 Python - 冷知識篇
eddie
1
350
ぬるぬる動かせ! Riveでアニメーション実装🐾
kno3a87
1
220
Improving my own Ruby thereafter
sisshiki1969
1
160
デザイナーが Androidエンジニアに 挑戦してみた
874wokiite
0
470
詳解!defer panic recover のしくみ / Understanding defer, panic, and recover
convto
0
240
「手軽で便利」に潜む罠。 Popover API を WCAG 2.2の視点で安全に使うには
taitotnk
0
860
Kiroで始めるAI-DLC
kaonash
2
590
Featured
See All Featured
Imperfection Machines: The Place of Print at Facebook
scottboms
268
13k
Embracing the Ebb and Flow
colly
87
4.8k
How STYLIGHT went responsive
nonsquared
100
5.8k
Six Lessons from altMBA
skipperchong
28
4k
The Power of CSS Pseudo Elements
geoffreycrofte
77
6k
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
51
5.6k
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
229
22k
Building a Scalable Design System with Sketch
lauravandoore
462
33k
GraphQLとの向き合い方2022年版
quramy
49
14k
Optimizing for Happiness
mojombo
379
70k
A designer walks into a library…
pauljervisheath
207
24k
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
32
1.6k
Transcript
FOFCVMBS ʷ "VUP.-ʢԻೝࣝʣ ͰԿ͔ͬͯΈ͍ͨͱ͍͏ر ʹରͯ͠ಥ͖͚ͭΒΕͨݱ࣮ ʲΦϯϥΠϯʳΏΔ;ΘϚγϯϥʔχϯά WPM ʲFOFCVMBSฤʳ໌͔Β͑Δ͓खܰ.-αʔϏεΛֶ΅͏ʂ 8FE )JEF'VLBOPʢIJEFGʣ
ʢԾʣ
ΏΔ;ΘϚγϯϥʔχϯά WPMʲFOFCVMBSฤʳ໌͔Β͑Δ͓खܰ.-αʔϏεΛֶ΅͏ʂ ॳֶऀͳΓʹ Λཧղ͠ͳ͕Βɺ ͰϚγʔϯϥʔχϯάΛΔ ϝϦοτͱσϝϦοτΛࣗͳΓʹߟ͑ͯΈͨ ਆϋϯζΦϯಈը Λ௨ͯ͠ ຊ
ࣗݾհ ΏΔ;ΘϚγϯϥʔχϯά WPMʲFOFCVMBSฤʳ໌͔Β͑Δ͓खܰ.-αʔϏεΛֶ΅͏ʂ )JEF'VLBOP Ϣυ߹ಉձࣾ දࣾһ • σʔλੳͷडୗͱϓϩδΣΫτϚωδϝϯτͷडୗۀ •
݄͔ΒҰਓͰ΅ͪ΅ͪαʔϏε։ൃͯ͠·͢ 'BDFCPPL IJEFGLO 5XJUUFS !IJEFGLO
πΠʔτΑΖ͓͘͠Ͷ͕͍͠·͢ʵʂ ΏΔ;ΘϚγϯϥʔχϯά WPMʲFOFCVMBSฤʳ໌͔Β͑Δ͓खܰ.-αʔϏεΛֶ΅͏ʂ ZVSVGVXBNM ϋογϡλά
ΏΔ;ΘϚγϯϥʔχϯά WPMʲFOFCVMBSฤʳ໌͔Β͑Δ͓खܰ.-αʔϏεΛֶ΅͏ʂ ଟɺ͜ͷ͋ͱϨϕϧͷߴ͍-5͕ଓͩ͘Ζ͏ʜ ԶʜݟӫϓϥΠυΛࣺͯͯ େͷࣗͷऑ͞ΛӅͣ͞ʹ-5͢Δ ʢࣗͷϋʔυϧԼ͛ͯΔ͚ͩͰ͢ʣ
ΏΔ;ΘϚγϯϥʔχϯά WPMʲFOFCVMBSฤʳ໌͔Β͑Δ͓खܰ.-αʔϏεΛֶ΅͏ʂ ࠷ۙϓϩάϥϛϯάΕ͖ͯͨʢਂࠁͳΈʣ • Ͱ͖ͳ͘ͳ͖ͬͯͨϓϩάϥϛϯά ʹର͢Δʜߴ·Δۤखҙࣝ • Զ͏1E.͡Όͳͯ͘1K.ͱͯ͠ੜ ͖͍͚ͯΑ͘Ͷʁͱ͍͏
৬छతͳݴ͍༁ *P5-5σϏϡʔΛՌͨͨ͠ͱ͖ͷεϥΠυ
ΏΔ;ΘϚγϯϥʔχϯά WPMʲFOFCVMBSฤʳ໌͔Β͑Δ͓खܰ.-αʔϏεΛֶ΅͏ʂ FOFCVMBS ͱ͖߹͏ͱݴͬͯɺආ͚Δʑ *P5-5σϏϡʔΛՌͨͨ͠ͱ͖ͷεϥΠυ
ΏΔ;ΘϚγϯϥʔχϯά WPMʲFOFCVMBSฤʳ໌͔Β͑Δ͓खܰ.-αʔϏεΛֶ΅͏ʂ ͰͬͺΓɺͪΐͬͱຊʹ FOFCVMBS ʹ৮ΕͯΈ͍ͨͷΑʜ ͳΜ͍ͯ͏͔ʮҰճ৮ΕͯΈ͍ͨʯΈ͍ͨͳ ܦݧΛੵΜͰ͓͖͍ͨͳ͍ͬͯ͏ح৺͕͋Δ
ͦΜͳͳ͔ɺϝγΞʢٹੈओʣతΠϕϯτ͕ݱΕΔ ΏΔ;ΘϚγϯϥʔχϯά WPMʲFOFCVMBSฤʳ໌͔Β͑Δ͓खܰ.-αʔϏεΛֶ΅͏ʂ FOFCVMBSͱ5FBDIBCMF.BDIJOFϋϯζΦϯ ϥϯν࣌ؒ։࠵ r DPOOQBTT IUUQTFOFCVMBSDPOOQBTTDPNFWFOU
߽՚෮शಈը͖ʂ͜ΕຊʹࢹௌඞਢɻϚδɻ ΏΔ;ΘϚγϯϥʔχϯά WPMʲFOFCVMBSฤʳ໌͔Β͑Δ͓खܰ.-αʔϏεΛֶ΅͏ʂ FOFCVMBSͱ5FBDIBCMF.BDIJOFϋϯζΦϯ ϥϯν࣌ؒ։࠵ r DPOOQBTT ͷࢀߟࢿྉಈը IUUQTFOFCVMBSDPOOQBTTDPNFWFOU
࣮ࡍʹͬͯΈͨ ΏΔ;ΘϚγϯϥʔχϯά WPMʲFOFCVMBSฤʳ໌͔Β͑Δ͓खܰ.-αʔϏεΛֶ΅͏ʂ ͓ੈࣙൈ͖ɾൈ͖ͰਆϋϯζΦϯಈը͔ͩΒɺຊʹͬͯΈΔͷ͓͢͢ΊͰ͢
-*/&ʹ݁ՌΛฦ͢ͷͬͯҟৗͳୡײ͕͋Δ ΏΔ;ΘϚγϯϥʔχϯά WPMʲFOFCVMBSฤʳ໌͔Β͑Δ͓खܰ.-αʔϏεΛֶ΅͏ʂ ಈ࡞ϋϯζΦϯͱಉ͡ͳͷͰɺσϞׂѪ͠·͢ʔ
ΏΔ;ΘϚγϯϥʔχϯά WPMʲFOFCVMBSฤʳ໌͔Β͑Δ͓खܰ.-αʔϏεΛֶ΅͏ʂ ͱ͍͏Θ͚Ͱࠓճͷ-5ʜ ͜ͷಈըͷߨࢣͰ͋Δ͕͓·Δ͞Μͱ FOFCVMBSͷ͍ํಈըΛڞ༗ͯͩͬͨ͘͠͞ ϑϧͷࢁ㟒͞ΜʹϦεϖΫτΛࠐΊͯʜ
ΏΔ;ΘϚγϯϥʔχϯά WPMʲFOFCVMBSฤʳ໌͔Β͑Δ͓खܰ.-αʔϏεΛֶ΅͏ʂ ॳֶऀͳΓʹ Λཧղ͠ͳ͕Βɺ ͰϚγʔϯϥʔχϯάΛΔ ϝϦοτͱσϝϦοτΛࣗͳΓʹߟ͑ͯΈͨ ਆϋϯζΦϯಈը Λ௨ͯ͠ ຊ
FOFCVMBS ʷ .-ΛΔϝϦοτ ΏΔ;ΘϚγϯϥʔχϯά WPMʲFOFCVMBSฤʳ໌͔Β͑Δ͓खܰ.-αʔϏεΛֶ΅͏ʂ ϝδϟʔͳػցֶशػೳͷ࣮ͳΒɺ໌Β͔ʹ։ൃ͔ΒσϓϩΠ·Ͱ͕ૣ͍ ϑϩʔʢϓϩάϥϜͷ࣮ߦॱংʣΛ(6*Ͱૢ࡞ɾѲͰ͖Δ͜ͱ
ϩʔίʔυͰ͋Δ͜ͱ ʢ΄΅ߦͷίʔυͰظ͢ΔػೳΛ࣮Ͱ͖Δʣ σϓϩΠָ͕ ͔ͨ͠ʹίϛϡχςΟͷهࣄ͕ࢀߟʹͳΔ
FOFCVMBS ʷ .-ΛΔϝϦοτ ΏΔ;ΘϚγϯϥʔχϯά WPMʲFOFCVMBSฤʳ໌͔Β͑Δ͓खܰ.-αʔϏεΛֶ΅͏ʂ ϝδϟʔͳػցֶशػೳͷ࣮ͳΒɺ໌Β͔ʹ։ൃ͔ΒσϓϩΠ·Ͱ͕ૣ͍ ϑϩʔʢϓϩάϥϜͷ࣮ߦॱংʣΛ(6*Ͱૢ࡞ɾѲͰ͖Δ͜ͱ
ϩʔίʔυͰ͋Δ͜ͱ ʢ΄΅ߦͷίʔυͰظ͢ΔػೳΛ࣮Ͱ͖Δʣ σϓϩΠָ͕ ͔ͨ͠ʹίϛϡχςΟͷهࣄ͕ࢀߟʹͳΔ
͜ΕɺΘ͔Γ͗ͨ͢͢ɻ ΏΔ;ΘϚγϯϥʔχϯά WPMʲFOFCVMBSฤʳ໌͔Β͑Δ͓खܰ.-αʔϏεΛֶ΅͏ʂ ਧ͖ग़͠ͷཧղ͕ؒҧͬͯͨΒڭ͑ͯ΄͍͠Ͱ͢ どこに情報を送るのー? →enebularが勝⼿にデプロイし てくれるURL+任意のURL(ex. /linebot) LINE
の Messaging API を使う ために、認証する 返答形式を書いてる メッセージ形式で、返信メッ セージとして、判別結果をテキ ストで返す API使っていいよってなったら、解析 したデータ(写真)を⼊⼒して、判 別結果(Class name)を出⼒する ⾃分で作ったAPIを使って返信 内容を返すから、そのAPIを使 うためにアクセストークンとか をパパッと⼊⼒する LINE developers ドキュメントに 詳しく書いてる
FOFCVMBS ʷ .-ΛΔϝϦοτ ΏΔ;ΘϚγϯϥʔχϯά WPMʲFOFCVMBSฤʳ໌͔Β͑Δ͓खܰ.-αʔϏεΛֶ΅͏ʂ ϝδϟʔͳػցֶशػೳͷ࣮ͳΒɺ໌Β͔ʹ։ൃ͔ΒσϓϩΠ·Ͱ͕ૣ͍ ϑϩʔʢϓϩάϥϜͷ࣮ߦॱংʣΛ(6*Ͱૢ࡞ɾѲͰ͖Δ͜ͱ
ϩʔίʔυͰ͋Δ͜ͱ ʢ΄΅ߦͷίʔυͰظ͢ΔػೳΛ࣮Ͱ͖Δʣ σϓϩΠָ͕ ͔ͨ͠ʹίϛϡχςΟͷهࣄ͕ࢀߟʹͳΔ
ຊʹɺϩʔίʔυʢߦʣ͗ͨ͢ɻ ΏΔ;ΘϚγϯϥʔχϯά WPMʲFOFCVMBSฤʳ໌͔Β͑Δ͓खܰ.-αʔϏεΛֶ΅͏ʂ Ԡ༻͍ͨ͠ͳΒɺવҰߦͣͭಡΜͰཧղ͠ͳ͖ΌͳΒΜɻ Teachable Machine からの判別結果が、どの 変数に⼊るのかは正直わからなかったから、 コピペして脳死でやってしまった
メッセージの返答形式は、LINE Developers ドキュメント⾒れば、理解できた .FTTBHJOH"1*ϦϑΝϨϯε c-*/&%FWFMPQFST IUUQTEFWFMPQFSTMJOFCJ[KBSFGFSFODFNFTTBHJOHBQJ
ͬͯΈͯؾ͍ͮͨ͜ͱ ΏΔ;ΘϚγϯϥʔχϯά WPMʲFOFCVMBSฤʳ໌͔Β͑Δ͓खܰ.-αʔϏεΛֶ΅͏ʂ &OFCVMBSͷσϝϦοτͰͳͯ͘ɺϩʔίʔυʹ͓͚Δ੍݅ʹ͍ۙͱ͓͏ɻ ϩʔίʔυ ઃܭྗ͕͋ΔΤϯδχΞʹ༩͑ΒΕͨ͝๙ඒͰ͋Δ ͍͍ͨػցֶशϥΠϒϥϦʢ"1*ͱݴͬͨ΄͏͕ਖ਼͍͠ʁʣɺ
/PEF3&%ͱݺΕΔ։ൃπʔϧʹґଘ͢Δ ೖྗ͞ΕΔσʔλͱग़ྗ͞ΕΔσʔλͷܗ͕ࣜΘ͔Βͳ͍ͱɺΘΓͱ؆ ୯ʹ٧Ήʢ"1*Λ͍׳ΕͯΔਓશ͘ͳ͍ͱࢥ͏͚Ͳɺ"1*ͬͨ ͜ͱͳ͍ਓ࠷ॳʹϋϚΔ෦ͩͱࢥ͏ʣ
ͬͯΈͯؾ͍ͮͨ͜ͱ ΏΔ;ΘϚγϯϥʔχϯά WPMʲFOFCVMBSฤʳ໌͔Β͑Δ͓खܰ.-αʔϏεΛֶ΅͏ʂ &OFCVMBSͷσϝϦοτͰͳͯ͘ɺϩʔίʔυʹ͓͚Δ੍݅ʹ͍ۙͱ͓͏ɻ ϩʔίʔυ ઃܭྗ͕͋ΔΤϯδχΞʹ༩͑ΒΕͨ͝๙ඒͰ͋Δ ͍͍ͨػցֶशϥΠϒϥϦʢ"1*ͱݴͬͨ΄͏͕ਖ਼͍͠ʁʣɺ
/PEF3&%ͱݺΕΔ։ൃπʔϧʹґଘ͢Δ ೖྗ͞ΕΔσʔλͱग़ྗ͞ΕΔσʔλͷܗ͕ࣜΘ͔Βͳ͍ͱɺΘΓͱ؆ ୯ʹ٧Ήʢ"1*Λ͍׳ΕͯΔਓશ͘ͳ͍ͱࢥ͏͚Ͳɺ"1*ͬͨ ͜ͱͳ͍ਓ࠷ॳʹϋϚΔ෦ͩͱࢥ͏ʣ
ઃܭྗͱ ΏΔ;ΘϚγϯϥʔχϯά WPMʲFOFCVMBSฤʳ໌͔Β͑Δ͓खܰ.-αʔϏεΛֶ΅͏ʂ FOFCVMBS Ͱ࠶ݱ͍ͨ͠ ೖྗˠϓϩάϥϜˠग़ྗ ͷҰ࿈ͷྲྀΕʢϑϩʔʣΛͭ͘Δྗ -*/& 5FBDIBCMF
.BDIJOF -*/& ೖྗ ΠϯλʔϑΣΠε ͍͍ͨػೳ ʢػցֶशϞσϧʣ ग़ྗ ΠϯλʔϑΣΠε ը૾σʔλ ผ݁Ռͷจࣈྻ FOFCVMBSͱ5FBDIBCMF.BDIJOFϋϯζΦϯ ϥϯν࣌ؒ։࠵ r DPOOQBTT ͷࢀߟࢿྉಈը IUUQTFOFCVMBSDPOOQBTTDPNFWFOU
ϩʔίʔυͰׂ͚ͯ௨Εͳ͍ɺઃܭɻ ΏΔ;ΘϚγϯϥʔχϯά WPMʲFOFCVMBSฤʳ໌͔Β͑Δ͓खܰ.-αʔϏεΛֶ΅͏ʂ ͨΓલͬͪΌͨΓલ͚ͩͲɺվΊͯͦͷେ͞Λ࣮ײͨ͠ -*/& 5FBDIBCMF .BDIJOF -*/& ೖྗ
ΠϯλʔϑΣΠε ͍͍ͨػೳ ʢػցֶशϞσϧʣ ग़ྗ ΠϯλʔϑΣΠε ը૾σʔλ ผ݁Ռͷจࣈྻ
ͬͯΈͯؾ͍ͮͨ͜ͱ ΏΔ;ΘϚγϯϥʔχϯά WPMʲFOFCVMBSฤʳ໌͔Β͑Δ͓खܰ.-αʔϏεΛֶ΅͏ʂ &OFCVMBSͷσϝϦοτͰͳͯ͘ɺϩʔίʔυʹ͓͚Δ੍݅ʹ͍ۙͱ͓͏ɻ ϩʔίʔυ ઃܭྗ͕͋ΔΤϯδχΞʹ༩͑ΒΕͨ͝๙ඒͰ͋Δ ͍͍ͨػցֶशϥΠϒϥϦʢ"1*ͱݴͬͨ΄͏͕ਖ਼͍͠ʁʣɺ
/PEF3&%ͱݺΕΔ։ൃπʔϧʹґଘ͢Δ ೖྗ͞ΕΔσʔλͱग़ྗ͞ΕΔσʔλͷܗ͕ࣜΘ͔Βͳ͍ͱɺΘΓͱ؆ ୯ʹ٧Ήʢ"1*Λ͍׳ΕͯΔਓશ͘ͳ͍ͱࢥ͏͚Ͳɺ"1*ͬͨ ͜ͱͳ͍ਓ࠷ॳʹϋϚΔ෦ͩͱࢥ͏ʣ
5FBDIBCMF.BDIJOF̏ͭͷػցֶशϞσϧΛ࡞ΕΔ ΏΔ;ΘϚγϯϥʔχϯά WPMʲFOFCVMBSฤʳ໌͔Β͑Δ͓खܰ.-αʔϏεΛֶ΅͏ʂ ˞5FBDIBCMF.BDIJOFͱʁ͍ͬͯ͏ղઆׂѪ͠·͢ʂ 5FBDIBCMF.BDIJOF IUUQTUFBDIBCMFNBDIJOFXJUIHPPHMFDPN
͏Ϟσϧ͚ͩม͑Εউ֬ͩͱա৴ ΏΔ;ΘϚγϯϥʔχϯά WPMʲFOFCVMBSฤʳ໌͔Β͑Δ͓खܰ.-αʔϏεΛֶ΅͏ʂ ϞσϧʹඞཁͳೖྗσʔλมΘΔͷͰɺͦ͜มߋͭͭ͠ʜ͜Εߦ͚ΔͰ͠ΐ 5FBDIBCMF.BDIJOF IUUQTUFBDIBCMFNBDIJOFXJUIHPPHMFDPN
/PEF3&%ʹެ։͞Ε͍ͯΔϥΠϒϥϦ ΏΔ;ΘϚγϯϥʔχϯά WPMʲFOFCVMBSฤʳ໌͔Β͑Δ͓खܰ.-αʔϏεΛֶ΅͏ʂ 5FBDIBCMF.BDIJOFͰώοτͨ͠།ҰͷϥΠϒϥϦʢݱ࣌ʣ A Node-RED node based in
tensorflow.js that enables to run custom image classification trained models using Teachable Machine tool.
/PEF3&%ʹґଘ͢Δ͍ͬͯ͏ͷʜ͜͏͍͏͜ͱ ΏΔ;ΘϚγϯϥʔχϯά WPMʲFOFCVMBSฤʳ໌͔Β͑Δ͓खܰ.-αʔϏεΛֶ΅͏ʂ 5FBDIBCMF.BDIJOF͕ఏڙ͍ͯ͠Δػೳͷ͏ͪɺ̍ͭͷϞσϧ͔͑͠ͳ͍ʢଟʣ 5FBDIBCMF.BDIJOFΛ༻ͯ͠ΧελϜը૾ྨͷֶश ࡁϞσϧΛ࣮ߦͰ͖ΔΑ͏ʹ͢ΔUFOTPSGMPXKTϕʔεͷ /PEF3&%ϊʔυͰ͢Αɻ
ա৴ʹΑΔશഊ ΏΔ;ΘϚγϯϥʔχϯά WPMʲFOFCVMBSฤʳ໌͔Β͑Δ͓खܰ.-αʔϏεΛֶ΅͏ʂ ͦΜͳ͜ͱͳ͍Αͬͯݴ͏߹ɺڭ͑ͯ΄͍͠Ͱ͢ʢ࣮ʣ ͋Δ ଟ ͳ͍ ଟ ͳ͍
ࢲͷഊྫ1PTF.PEFMͰ-*/&ͰϑΟοτωείʔν ΏΔ;ΘϚγϯϥʔχϯά WPMʲFOFCVMBSฤʳ໌͔Β͑Δ͓खܰ.-αʔϏεΛֶ΅͏ʂ 1PTF.PEFMඵͰ࡞Ε͚ͨͲɺFOFCVMBS Λ࣮ͬͯ͢Δ͜ͱͰ͖ͳ͔ͬͨ ࠊ͕Լ͕͍ͬͯΔ ྑ͍εΫϫοτϙʔζ ࠊ͕Լ͕͍ͬͯͳ͍ ѱ͍εΫϫοτϙʔζ
Զͷ3JOH'JU͍ͬͯ͏ͷΛ ࡞Γ͔ͨͬͨ
5FBDIBCMF.BDIJOFͰ͓खܰʹ࡞ΕΔͬͯ͜ͱʜ ΏΔ;ΘϚγϯϥʔχϯά WPMʲFOFCVMBSฤʳ໌͔Β͑Δ͓खܰ.-αʔϏεΛֶ΅͏ʂ ʮͻ͟ͷ֯ʯͰผ͔ͨͬͨ͠ͷ͕ͩɺʮͻ͡ʯͰ&YDFMMFOUͨ݅͠ 簡単に作れてしまうがゆえに、 間違った予測結果を簡単に出⼒してしまう
ϩʔίʔυͱ͍͏͍Ռ࣮ʹ੍͕͋Δ ΏΔ;ΘϚγϯϥʔχϯά WPMʲFOFCVMBSฤʳ໌͔Β͑Δ͓खܰ.-αʔϏεΛֶ΅͏ʂ ࣮ߦ͍ͨ͠ػೳ͕/PEF3&%Ͱఏڙ͞Ε͍ͯΔͷ͔ݕূ͢Δ͖ͩͬͨ ͨΊ͠ʹʮHPPHMFʯͰαʔνͯ͠ΈͨΒ ͋Β·͊͜Μͳʹ৭ʑ͋ΔͰ͋Γ·ͤΜ͔ʙ
ͬͯΈͯؾ͍ͮͨ͜ͱ ΏΔ;ΘϚγϯϥʔχϯά WPMʲFOFCVMBSฤʳ໌͔Β͑Δ͓खܰ.-αʔϏεΛֶ΅͏ʂ &OFCVMBSͷσϝϦοτͰͳͯ͘ɺϩʔίʔυʹ͓͚Δ੍݅ʹ͍ۙͱ͓͏ɻ ϩʔίʔυ ઃܭྗ͕͋ΔΤϯδχΞʹ༩͑ΒΕͨ͝๙ඒͰ͋Δ ͍͍ͨػցֶशϥΠϒϥϦʢ"1*ͱݴͬͨ΄͏͕ਖ਼͍͠ʁʣɺ
/PEF3&%ͱݺΕΔ։ൃπʔϧʹґଘ͢Δ ೖྗ͞ΕΔσʔλͱग़ྗ͞ΕΔσʔλͷܗ͕ࣜΘ͔Βͳ͍ͱɺΘΓͱ؆ ୯ʹ٧Ήʢ"1*Λ͍׳ΕͯΔਓશ͘ͳ͍ͱࢥ͏͚Ͳɺ"1*ͬͨ ͜ͱͳ͍ਓ࠷ॳʹϋϚΔ෦ͩͱࢥ͏ʣ
γϯϓϧ͗ͯ͢ɺͲ͏ܨ͛Εྑ͍ͷ͔໎ࢠʹͳͬͨ ΏΔ;ΘϚγϯϥʔχϯά WPMʲFOFCVMBSฤʳ໌͔Β͑Δ͓खܰ.-αʔϏεΛֶ΅͏ʂ FOFCVMBS ͷσϝϦοτͰͳͯ͘ɺࣗͷٕज़ྗෆPS[ ྫ (PPHMF༁ͷ"1*Λ͑ΔϥΠϒϥϦΛ͓͏ͱͯ͠Έͨ • -*/&ͷυΩϡϝϯτΛݟͳ͕Βɺς
Ωετϝοηʔδͷऔಘํ๏Λཧղ ͠ͳ͖ΌͳΒΜ • ͜ͷ"1*ʢϥΠϒϥϦʁͪΐͬͱΘ͔ Βͳ͘ͳ͖ͬͯͨΑʂʣ͕ग़ྗ͢Δ ܗࣜΛཧղ͠ͳ͖ΌͳΒΜʢී௨ͷ จࣈྻͩͱࢥ͏Μ͚ͩͲ͞ʣ
FOFCVMBS ʷ .-ॳֶऀͳΓͷ·ͱΊ ΏΔ;ΘϚγϯϥʔχϯά WPMʲFOFCVMBSฤʳ໌͔Β͑Δ͓खܰ.-αʔϏεΛֶ΅͏ʂ • ແྉͰֶΔಈըاըΛͬͯ͘ΕΔਓͨͪਓؒ͡Όͳ͍ɻਆɻ (0%ɻϝγΞʢٹੈओʣɻຊʹ͋Γ͕ͱ͏͍͟͝·ͨ͠N @@
N • FOFCVMBS Λͬͯɺૉૣ͘ɾ؆୯ʹϏδϡΞϧϓϩάϥϛϯά͍ͨ͠ͱ ࢥͬͨΒɺ࣮͍ͨ͠ػೳ͕ɺ/PEF3&%ͷϥΠϒϥϦʹؚ·Ε͍ͯΔ ͔Ͳ͏͔ʁΛ୳͢͜ͱ͕େࣄ͔ʢͦͷϥΠϒϥϦΛ࡞ΕΔΤϯδχΞ ผ͚ͩͲʣ • FOFCVMBS ʷ .-ʹ͓͍ͯϝδϟʔͳػցֶशϞσϧΛΈࠐΜͩϓϩ τλΠϓΛ࡞ͬͯΈΔʹ࣮֬ʹ࠷ߴͰ(PPEɻ • *P5ͩͱͬͱϥΠϒϥϦ͕๛ͰΑΓૣָ͘͘͠ΞϓϦέʔγϣϯ͕࡞ΕͪΌ͏ͷ͔ͳʁͱ͔ࢥͬͨ