Upgrade to Pro — share decks privately, control downloads, hide ads and more …

俺のNETFLIX season2 AmazonPersonalize

h-fkn
July 02, 2020

俺のNETFLIX season2 AmazonPersonalize

【オンライン】ゆるふわマシンラーニング vol.4 - connpass
https://enebular.connpass.com/event/178062/

h-fkn

July 02, 2020
Tweet

More Decks by h-fkn

Other Decks in Technology

Transcript

  1. 俺の 発表者一覧 1. 俺のNETFLIX〜今度こそクラウドでレコメンド実装する〜 (hidefさん) 2. Web Speech APIとGoogle Cloud

    Speech to Textを比較した話(仮) (masakazu_kawazuさん) 3. ラズパイは俺の嫁!GoogleAutoMLで作る音声アシスタント (ringoさん) 4. 映像を掛け合わせて新しい映像を生み出したい! (notitle420さん) 5. enebular x Teachable Machine x LINE Bot (仮) (がおまるさん)
  2. 俺の 自己紹介 • Twitter @hidefkn • Facebook hidefkn ▼おすすめのネトフリ視聴コンテンツ 『かぐや様は告らせたい』

    いまいちって言っちゃったけど、きちんと見始めたら普通にハマった 『梨泰院クラス』もいいけど、『人間レッスン』 韓流ナメてた。ただし長いので、仕事をサボる覚悟が必要() 7
  3. 俺の 2020 ?シーズン シーズン1-1を再生 他のエピソード 類似する作品 音声および字幕 マイリストに追加 俺の マッチ度:

    96% ゆるふわマシーンラーニングの登壇することになった!しかし、 登壇テーマが決まらない。この機会に、ネットフリックスに使われ ている機械学習の技術をゆるふわに学んでいくが悪戦苦闘! 出演: 深野嗣 ゆるふわな機械学習、ティーン向け、パワポだけ無駄にこだわる 8
  4. 俺の 推薦システムは一生かけても見きれない映画作品を絞込んでくれる Film Exhibition Yearbook |2018 から抜粋 15 • 年間1,200件の映画作品が公開されている

    • 一方、日本人は年間1.4回しか映画を鑑賞しない • もしも、作品を全部鑑賞するのであれば、1日に3.3作品以上見る必要がある • 1作品2時間だと仮定すると、6時間以上も必要! • 絶対ムリ! 映画を全部見るのは絶対ムリ! • 「あなたにイチオシ!」とオススメしてくれる推薦システムは… • わざわざ、自分に合った作品を探さなくて済む! • つまり、ユーザーの貴重な時間を無駄にしない神テクノロジー!
  5. 俺の ゆるく試す分には、無料でいけると思う 23 引用: Amazon Personalize • 期間 初回利用から2ヶ月間 •

    データ処理およびストレージ 毎月最大 20GB • トレーニング 毎月最大 100 トレーニング時間 • レコメンデーション 最大 50 TPS 時間 即時推薦/月
  6. 俺の Amazon Personalize を使う方法は3つある 1. Amazon Personalize 専用コンソールから使う 2. AWS

    CLI から使う 3. AWS SDK から使う 今回は、専用コンソール(1)でやってみた 26
  7. 俺の 今回は2018年9月9日に更新された 1MBの一番軽いデータセットを使うことにした 32 ml-latest-small.zip ratings.csv movies.csv tags.csv links.csv •

    600人のユーザーが • 9,000本の映画作品の中から • 視聴した作品を評価したデータ • 作品に対してハッシュタグもつけている • 評価件数は100,000件 ふ〜ん(?)
  8. 俺の 作品IDとスコアが返される(スコア低すぎる気がしてるがご容赦ください) 57 Shawshank Redemption, The (1994) Pulp Fiction (1994)Picture

    Perfect (1997) Picture Perfect (1997) • 318 ドラマ,クライムフィクション • 296 コメディ, クライム • 593 ロマンス, コメディ クライム、コメディ系的なのを薦めるって感じだ と思われる IDで返されるので、検証はしづらい
  9. 俺の やってみて思ったこと 59 • シーズン1の借りを返した • 権限周りの設定に少しハマった • レシピ(Recipe)がめちゃくちゃ便利 •

    学習からモデル構築まで3時間もかからなかった • 検証環境は別で作ったほうが良いと思った • Google(GC)よりAmazon(AWS)派になったかも • なお実務ではMS(Azure)の模様