Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
データ分析プロセス/AIアプリケーションの基本設計
Search
h-fkn
July 26, 2019
Technology
0
190
データ分析プロセス/AIアプリケーションの基本設計
DataScienceBOOTCAMP 5th day2
h-fkn
July 26, 2019
Tweet
Share
More Decks by h-fkn
See All by h-fkn
The advantages and disadvantages of using machine learning with enebular
fkn0839
0
260
ラズパイで写真を撮った話_IoTLT_vol.66_2200812.pdf
fkn0839
0
410
俺のNETFLIX season2 AmazonPersonalize
fkn0839
0
480
俺のNETFLIX season1
fkn0839
0
250
ゆるふわマシーンラーニング#2_内容調整中()
fkn0839
0
300
ゆるふわマシーンラーニング「❝ Google AutoML Tablesでお手軽AI ❞と題して話すつもりだったけど、実際に使ったらお手軽()だった件について5分以内で話す」
fkn0839
1
4.1k
DataScienceBOOTCAMP5th_part1
fkn0839
0
1.9k
G'SACADEMY LAB5th DataScience
fkn0839
0
210
AIアプリ開発に「目的設定」が大切な理由
fkn0839
0
140
Other Decks in Technology
See All in Technology
2025年夏 コーディングエージェントを統べる者
nwiizo
0
170
5年目から始める Vue3 サイト改善 #frontendo
tacck
PRO
3
220
生成AI時代のデータ基盤設計〜ペースレイヤリングで実現する高速開発と持続性〜 / Levtech Meetup_Session_2
sansan_randd
1
150
【NoMapsTECH 2025】AI Edge Computing Workshop
akit37
0
190
Generative AI Japan 第一回生成AI実践研究会「AI駆動開発の現在地──ブレイクスルーの鍵を握るのはデータ領域」
shisyu_gaku
0
270
初めてAWSを使うときのセキュリティ覚書〜初心者支部編〜
cmusudakeisuke
1
260
COVESA VSSによる車両データモデルの標準化とAWS IoT FleetWiseの活用
osawa
1
290
KotlinConf 2025_イベントレポート
sony
1
140
Webアプリケーションにオブザーバビリティを実装するRust入門ガイド
nwiizo
7
830
20250910_障害注入から効率的復旧へ_カオスエンジニアリング_生成AIで考えるAWS障害対応.pdf
sh_fk2
3
260
JTCにおける内製×スクラム開発への挑戦〜内製化率95%達成の舞台裏/JTC's challenge of in-house development with Scrum
aeonpeople
0
230
Language Update: Java
skrb
2
300
Featured
See All Featured
Writing Fast Ruby
sferik
628
62k
A Modern Web Designer's Workflow
chriscoyier
696
190k
Docker and Python
trallard
45
3.6k
Learning to Love Humans: Emotional Interface Design
aarron
273
40k
Designing Experiences People Love
moore
142
24k
Scaling GitHub
holman
463
140k
BBQ
matthewcrist
89
9.8k
The Myth of the Modular Monolith - Day 2 Keynote - Rails World 2024
eileencodes
26
3k
Helping Users Find Their Own Way: Creating Modern Search Experiences
danielanewman
29
2.9k
How GitHub (no longer) Works
holman
315
140k
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
229
22k
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
32
1.6k
Transcript
σʔλੳϓϩηε %BUB4DJFODF#005$".1ୈظ
ΧϦΩϡϥϜ %BUB4DJFODF#005$".1UI
%BUB4DJFODF#005$".1UI ΧϦΩϡϥϜ
%BUB4DJFODF#005$".1UI ΧϦΩϡϥϜ • άϧʔϓϫʔΫ • ػցֶश • ౷ܭֶ •
%BUBCBTF • ϏδωεޮՌ • ϓϩτλΠϓ։ൃ • ϨϙʔςΟϯά
%BUB4DJFODF#005$".1UI ίϯηϓτ શճͷߨٛͰ$3*41%.Λ࠷࠷Ͱप͠Α͏ $3*41%. $3PTT*OEVTUSZ4UBOEBSE1SPDFTTGPS%BUB.JOJOH ɺ σʔλੳϓϩδΣΫτͷϓϩηεϞσϧ #VTJOFTT 6OEFSTUBOEJOH
%FWFMPQNFOU %BUB 6OEFSTUBOEJOH &WBMVBUJPO %BUB 1SFQBSBUJPO .PEFMJOH
%BUB4DJFODF#005$".1UI ߨٛఔ શճͷߨٛͰ$3*41%.Λ࠷࠷Ͱप͠Α͏ ビジネス理解 Business Understanding データ理解 Data Understanding
データ準備 Data Preparation モデリング Modeling 性能評価 Evaluation 開発 Development $3*41%.ʢσʔλੳϓϩηεʣ %": Ր %": ۚ %": Ր %": ۚ %": ۚ
%BUB4DJFODF#005$".1UI ߨٛఔ શճͷߨٛͰ$3*41%.Λ࠷࠷Ͱप͠Α͏ ビジネス理解 Business Understanding データ理解 Data Understanding
データ準備 Data Preparation モデリング Modeling 性能評価 Evaluation 開発 Development $3*41%.ʢσʔλੳϓϩηεʣ %": Ր %": ۚ %": Ր %": ۚ %": ۚ
%BUB4DJFODF#005$".1UI ߨٛఔ શճͷߨٛͰ$3*41%.Λ࠷࠷Ͱप͠Α͏ ビジネス理解 Business Understanding データ理解 Data Understanding
データ準備 Data Preparation モデリング Modeling 性能評価 Evaluation 開発 Development $3*41%.ʢσʔλੳϓϩηεʣ %": Ր %": ۚ %": Ր %": ۚ %": ۚ ڥߏங
%BUB4DJFODF#005$".1UI ౸ୡඪ શճͷߨٛͰ$3*41%.Λ࠷࠷Ͱप͠Α͏ ビジネス理解 Business Understanding データ理解 Data Understanding
データ準備 Data Preparation モデリング Modeling 性能評価 Evaluation 開発 Development $3*41%.ʢσʔλੳϓϩηεʣ %": Ր %": ۚ %": Ր %": ۚ %": ۚ
%BUB4DJFODF#005$".1UI ౸ୡඪ $3*41%. ߨٛ༰ ౸ୡඪ %": Ϗδωεཧղ σʔλαΠΤϯε֓ اըΛϞσϧԽͰ͖Δ
%": ୳ࡧతσʔλղੳʙ ϞσϦϯά σʔλੳϓϩηε ϞσϦϯά·Ͱͷ ྲྀΕΛཧղ͍ͯ͠Δ %": ։ൃ γϯάϧΞϓϦέʔγϣϯʹϞσϧΛΈࠐΉ ʢ'MBTLΛͬͨ8FC"QQϓϩάϥϛϯάʣ 8FC։ൃͷͨΊͷ 1ZUIPOϓϩάϥϛϯά %": ։ൃ γϯάϧΞϓϦέʔγϣϯʹϞσϧΛΈࠐΉ ʢ'MBTLΛͬͨ8FC"QQϓϩάϥϛϯάʣ ಉ্ %": Ϗδωεཧղ ϨϙʔςΟϯάɾࢿରޮՌܭࢉ σʔλΛదʹՄࢹԽ ϏδωεཱҊͰ͖Δ
%BUB4DJFODF#005$".1UI ౸ୡඪ $3*41%. ߨٛ༰ ౸ୡඪ %": Ϗδωεཧղ σʔλαΠΤϯε֓ اըΛϞσϧԽͰ͖Δ
%": ୳ࡧతσʔλղੳʙ ϞσϦϯά σʔλੳϓϩηε ϞσϦϯά·Ͱͷ ྲྀΕΛཧղ͍ͯ͠Δ %": ։ൃ γϯάϧΞϓϦέʔγϣϯʹϞσϧΛΈࠐΉ ʢ'MBTLΛͬͨ8FC"QQϓϩάϥϛϯάʣ 8FC։ൃͷͨΊͷ 1ZUIPOϓϩάϥϛϯά %": ։ൃ γϯάϧΞϓϦέʔγϣϯʹϞσϧΛΈࠐΉ ʢ'MBTLΛͬͨ8FC"QQϓϩάϥϛϯάʣ ಉ্ %": Ϗδωεཧղ ϨϙʔςΟϯάɾࢿରޮՌܭࢉ σʔλΛదʹՄࢹԽ ϏδωεཱҊͰ͖Δ
લճͷৼΓฦΓ %BUB4DJFODF#005$".1UI
%BUB4DJFODF#005$".1UI "*։ൃϓϩδΣΫτͷਐΊํ IUUQTGPSNSVO!QSPUPUZQFNPEFMJOH ࣮ݱ͍ͨ͜͠ͱΛϞσϧʹͦ͏ ԾઆͱσʔλΛඥ͚ͯΈΑ͏
%BUB4DJFODF#005$".1UI "*։ൃϓϩδΣΫτͷਐΊํ "*։ൃ·Ͱͷεςοϓ γεςϜ։ൃ ػցֶशɾϞσϦϯά σʔλੳ ֶश༻σʔληοτ࡞ ୳ࡧతσʔλղੳ σʔλऩूɾੵ
తઃఆ 45&1 45&1 45&1 45&1 45&1 45&1 45&1
%BUB4DJFODF#005$".1UI "*։ൃϓϩδΣΫτͷਐΊํ 課題 データがある データがない ⾃動化できる ⾃動化できない 判断必要な業務 判断不要な業務
AI 取り組む 取り組まない データ収集 取り残される 取り組む 取り組まない ⼈⼒ 取り残される RPA AI 投資対効果 中 投資対効果 中 投資対効果 低 投資対効果 ⼤ PoC
σʔλੳϓϩηε %BUB4DJFODF#005$".1ୈظ
%BUB4DJFODF#005$".1UI "*։ൃϓϩδΣΫτͷਐΊํ "*։ൃ·Ͱͷεςοϓ γεςϜ։ൃ ػցֶशɾϞσϦϯά σʔλੳ ֶश༻σʔληοτ࡞ ୳ࡧతσʔλղੳ σʔλऩूɾੵ
తઃఆ 45&1 45&1 45&1 45&1 45&1 45&1 45&1
%BUB4DJFODF#005$".1UI σʔλੳϓϩηε ୳ࡧతσʔλղੳ 㲈 هड़౷ܭʹ͍ۙ ݱঢ়ͷѲ ෳࡶͳσʔλΛγϯϓϧͳܗʹ͢Δ͜ͱͰਓؒʹͱͬͯཧղ͘͢͢͠Δʢهड़౷ܭʣ σʔλੳ 㲈
ਪ౷ܭʹ͍ۙ ະདྷͷ༧ଌ Կ͔ҙࢥܾఆΛ͢Δͱ͖ͷͨΊͷϑϨʔϜϫʔΫΛɺతͷ݁Ռ͕ى͜Δ֬Λࢉग़͢Δʢਪଌ౷ܭʣ ˝ ະདྷΛ༧ଌ͢ΔͨΊʹɺࠓͲ͏͍͏ঢ়ଶ͔ΛΔඞཁ͕͋Δɻ ͭ·Γɺ୳ࡧతσʔλղੳͳ͠ʹϞσϧߏஙͰ͖ͳ͍
%BUB4DJFODF#005$".1UI σʔλੳϓϩηε ୳ࡧతσʔλղੳͱ σʔλΛੳ͢Δલʹɺཧղ͢Δ • ूܭΛ͓͜ͳ͏ • ྻ໊ʢDPMVNOʣͷҙຯΛཧղ͢Δ •
ߦʢJOEFYʣʹ֨ೲ͞Ε͍ͯΔςΩετͷҙຯΛཧղ͢Δ
%BUB4DJFODF#005$".1UI σʔλੳϓϩηε ҙຯͷཧղ ྻͷҙຯΛΔ શମͷѲ σʔλͷେ͖͞ΛௐΔ
ݸͷѲ σʔλݸΛ্͑͛Δ ࣭ͷѲ ܽଛΛௐΔ ج४ͷൃݟ هड़౷ܭྔΛࢉग़͢Δ ภΓͷൃݟ άϥϑʢՄࢹԽ͢Δ͜ͱʣͰཧղ͢Δ
%BUB4DJFODF#005$".1UI σʔλੳϓϩηε ҙຯͷཧղ εϓϨουγʔτ༁ؔ શମͷѲ TIBQF
ݸͷѲ DPVOU ࣭ͷѲ ಉ্ʢࠓճεΩοϓʣ ج४ͷൃݟ EFTDSJCF ภΓͷൃݟ άϥϑʢՄࢹԽ͢Δ͜ͱʣͰཧղ͢Δ σʔλܕΛௐΔ EUZQFT
%BUB4DJFODF#005$".1UI σʔλੳϓϩηε ಈతܕ͚ݴޠ ܭࢉ͢ΔͨΊͷϥΠϒϥϦ σʔλΛѻ͏ͨΊͷϥΠϒϥϦ ػցֶशΛ͢ΔͨΊͷϥΠϒϥϦ ՄࢹԽ͢ΔͨΊͷϥΠϒϥϦ
50,:0-"#$0634&UI %&1-0:ϑΣʔζ %BUB4DJFODF σʔλੳϓϩηε • $PMBCPSBUPSZɺશʹΫϥυͰ࣮ߦ͞ΕΔ +VQZUFSϊʔτϒοΫڥͰ͢ɻ • ઃఆෆཁͰɺແྉͰ͝ར༻ʹͳΕ·͢ɻ
• $PMBCPSBUPSZΛ༻͢Δͱɺίʔυͷهड़ͱ࣮ߦɺղੳͷอଘڞ༗ɺڧྗͳίϯϐϡʔ ςΟϯά ϦιʔεͷΞΫηεͳͲΛϒϥβ͔Βͯ͢ແྉͰߦ͑·͢ɻ
50,:0-"#$0634&UI %&1-0:ϑΣʔζ %BUB4DJFODF σʔλੳϓϩηε
ϞσϦϯάجૅ %BUB4DJFODF#005$".1UI
ڭࢣ͋ΓֶशͰΑ͘͏ʮճؼʯͱʮྨʯ 回帰 未知のデータから連続する数値を予測する 分類 未知のデータから離散値(カテゴリ)を予測する • そのワインどれくらい美味しいかを数字で表現 • 今後、そのワインを何回買うであろうかを予測 •
そのワインは 美味しい or 美味しくない • そのワインはどんな種類︖(ボルドー or ブルゴーニュ)
%BUB4DJFODF#005$".1UI ϞσϦϯάجૅ ϞσϦϯάͷखॱ σʔληοτΛׂ͢Δ తมͱઆ໌ม ֶशσʔλͱݕূσʔλ
ػցֶश ΞϧΰϦζϜબఆ ަࠩݕূʢֶशํ๏ʣ ਫ਼ݕূ ग़ྗ
%BUB4DJFODF#005$".1UI ϞσϦϯάجૅ ࣮ࡍʹࣗͯ͠ΈΑ͏ • ඪ • ࠷ඪɿσʔλͷՄࢹԽ·Ͱ • ཧඪɿػցֶशʙϞσϦϯά·Ͱʢୠ͠ɺਫ਼Θͳ͍ʣ
• ࣌ؒɿʙ • ൃදɿ֤άϧʔϓʢʙʣ • ௐΔͱ͖ͷώϯτ • ΤϥʔϝοηʔδͰάάΔʂσʔλ໊໊ؔͰάάΔʂ
%BUB4DJFODF#005$".1UI ϞσϦϯάجૅ ࣮ࡍʹࣗͯ͠ΈΑ͏ • ඪ • ࠷ඪɿσʔλͷՄࢹԽ·Ͱ • ཧඪɿػցֶशʙϞσϦϯά·Ͱʢୠ͠ɺਫ਼Θͳ͍ʣ
• ࣌ؒɿʙ • ൃදɿ֤άϧʔϓʢʙʣ • ௐΔͱ͖ͷώϯτ • ΤϥʔϝοηʔδͰάάΔʂσʔλ໊໊ؔͰάάΔʂ ֤άϧʔϓͷൃදͱਐḿʹ߹Θͤͯɺ ࣍ճʮϞσϦϯάղઆ̎ʯΛՃ͢Δ͔அ͠·͢ʂ
͘͘λΠϜ %BUB4DJFODF#005$".1UI
%BUB4DJFODF#005$".1UI ϞσϦϯάجૅ ͘͘ձͷςʔϚΛܾΊΑ͏ $IBJOFSνϡʔτϦΞϧͰ ॏճؼੳ·ͰͬͯΈͨ ,BHHMFͷσʔληοτ Λͬͯ͘͘ ಠΓͰ ͯ͘͘͠Έ͍ͨ
,BHHMFͷσʔληοτ Λͬͯ͘͘ 8JOFσʔλ PS Ұॹʹ$IBJOFSνϡʔτϦΞϧ ΈΜͳ͕ σʔλੳʙϞσϦϯά ·Ͱܦݧ͍ͯ͠Δ :&4 /0 ͪΐͬͱෆ҆ͩ ઓͯ͠ΈΔʂ ࠓ ͷ ඪ
%BUB4DJFODF#005$".1UI ϞσϦϯάجૅ ·ͣҰॹʹ$IBJOFSνϡʔτϦΞϧ
%BUB4DJFODF#005$".1UI ϞσϦϯάجૅ ͘͘ձͷϧʔϧ • άϧʔϓϝϯόʔʹฉ͍ͯΈΑ͏ • εϓϨουγʔτͰͰ͖Δ͜ͱɺͬͯΈΑ͏ • ؆୯ͳूܭɺՄࢹԽ1ZUIPOͰΒͳͯ͘Α͍
• Τϥʔʹ׳ΕΑ͏ • ΤϥʔͷղܾࡦΛൃද͠Α͏ • ʮʙʙʙ·ͰͰ͖ͨʂʯ͕େͰ͢ʂ
࣍ճ༧ࠂ %BUB4DJFODF#005$".1UI
%BUB4DJFODF#005$".1UI ౸ୡඪ શճͷߨٛͰ$3*41%.Λ࠷࠷Ͱप͠Α͏ ビジネス理解 Business Understanding データ理解 Data Understanding
データ準備 Data Preparation モデリング Modeling 性能評価 Evaluation 開発 Development $3*41%.ʢσʔλੳϓϩηεʣ %": Ր %": ۚ %": Ր %": ۚ %": ۚ
"*ΞϓϦέʔγϣϯͷجຊઃܭ༷ %BUB4DJFODF#005$".1ୈظ
50,:0-"#$0634&UI %&1-0:ϑΣʔζ %BUB4DJFODF ڭࢣ͋ΓֶशϞσϧͷ߹ データセット 予測のもととなるデー タ モデル モデルが予測結果を
計算 教師データ 正しい結果 予測結果データ モデルが予測した結 果 データセット 予測のもととなるデー タ 性能評価 達成基準を満たして いるか モデル修正 達成基準を満たして いるか 最終モデル 完成 運⽤へ 機械学習 機械学習データセット 機械学習する対象
50,:0-"#$0634&UI %&1-0:ϑΣʔζ %BUB4DJFODF "*ΞϓϦέʔγϣϯ։ൃ 教師データ 正しい結果 データセット 予測のもととなるデータ 機械学習データセット
機械学習する対象 ⾝⻑(cm) 体重(kg) 性別 171.7 63.4 男性 154.2 50.1 ⼥性 ︙ ︙ ︙ 165.7 45.8 ⼥性 ⾝⻑(cm) 体重(kg) 171.7 63.4 154.2 50.1 ︙ ︙ 165.7 45.8 ⾝⻑(cm) 体重(kg) 性別 171.7 63.4 154.2 50.1 ︙ ︙ 165.7 45.8 ⾝⻑(cm) 体重(kg) 性別 171.7 63.4 男性 154.2 50.1 ⼥性 ︙ ︙ ︙ 165.7 45.8 ⼥性 学習⽤データセット 検証⽤データセット 結果を説明できる要素 説明変数 予測したい結果・⽬的 ⽬的変数
50,:0-"#$0634&UI %&1-0:ϑΣʔζ %BUB4DJFODF ڭࢣ͋ΓֶशϞσϧͷ߹ モデル モデルが予測結果を 計算 性能評価 達成基準を満たして
いるか モデル修正 達成基準を満たして いるか 最終モデル 完成 運⽤へ 機械学習 ⽬的変数 判断結果(答え) = 性別 説明変数 判断するために必要な要素 出⼒データ 答えが追加されたデータ ⼊⼒データ 答えがわからないデータ
50,:0-"#$0634&UI %&1-0:ϑΣʔζ %BUB4DJFODF "*ΞϓϦέʔγϣϯ։ൃ ڭࢣσʔλ ʢ: 9 9ʜʣ ༧ଌ
Ϟσϧ ༧ଌ݁Ռ ʢ:ʣ ೖྗ ग़ྗ
50,:0-"#$0634&UI %&1-0:ϑΣʔζ %BUB4DJFODF "*ΞϓϦέʔγϣϯ։ൃ ڭࢣσʔλ ʢ: 9 9ʜʣ ༧ଌ
Ϟσϧ ༧ଌ݁Ռ ʢ:ʣ ೖྗ ग़ྗ ༧ଌ Ϟσϧ ະͷσʔλ ೖྗ ༧ଌ݁Ռ ʢ:ʣ ग़ྗ
50,:0-"#$0634&UI %&1-0:ϑΣʔζ %BUB4DJFODF "*ΞϓϦέʔγϣϯ։ൃ ༧ଌ Ϟσϧ ະͷσʔλ ೖྗ ༧ଌ݁Ռ
ʢ:ʣ ग़ྗ ೖྗϑΥʔϜ ग़ྗ݁Ռදࣔ
50,:0-"#$0634&UI %&1-0:ϑΣʔζ %BUB4DJFODF "*ΞϓϦέʔγϣϯ։ൃ ༧ଌ Ϟσϧ ະͷσʔλ ೖྗ ༧ଌ݁Ռ
ʢ:ʣ ग़ྗ ೖྗϑΥʔϜ ग़ྗ݁Ռදࣔ ⼊⼒画⾯ HTML, CSS, JS 結果表⽰画⾯ HTML, CSS, JS
50,:0-"#$0634&UI %&1-0:ϑΣʔζ %BUB4DJFODF "*ΞϓϦέʔγϣϯ։ൃ ༧ଌ Ϟσϧ ະͷσʔλ ೖྗ ༧ଌ݁Ռ
ʢ:ʣ ग़ྗ ೖྗϑΥʔϜ ग़ྗ݁Ռදࣔ ⼊⼒画⾯ HTML, CSS, JS 結果表⽰画⾯ HTML, CSS, JS σʔλΛೖྗ͢Δը໘Λ࡞ ݁ՌΛग़ྗ͢Δը໘Λ࡞
50,:0-"#$0634&UI %&1-0:ϑΣʔζ %BUB4DJFODF "*ΞϓϦέʔγϣϯ։ൃ ༧ଌ Ϟσϧ ະͷσʔλ ೖྗ ༧ଌ݁Ռ
ʢ:ʣ ग़ྗ ೖྗϑΥʔϜ ग़ྗ݁Ռදࣔ モデル Python
50,:0-"#$0634&UI %&1-0:ϑΣʔζ %BUB4DJFODF "*ΞϓϦέʔγϣϯ։ൃ ༧ଌ Ϟσϧ ະͷσʔλ ೖྗ ༧ଌ݁Ռ
ʢ:ʣ ग़ྗ ೖྗϑΥʔϜ ग़ྗ݁Ռදࣔ モデル Python ϞσϧΛग़ྗ͠ɺ ΞϓϦέʔγϣϯʹΈࠐΉ
՝ %BUB4DJFODF#005$".1UI
%BUB4DJFODF#005$".1UI ՝ σʔλੳ͔ΒϞσϦϯά·ͰͷྲྀΕΛ෮श͢Δ • ,BHHMF͔ΒҙͷσʔληοτΛ༻͠ɺ σʔλੳʙϞσϦϯάΛߦ͏ʢ࣍ճಉ͡Α͏ʹൃදʣ • ݅ڭࢣ͋Γֶशʢճؼ PSྨϞσϧʣ
• ࣍ճͷͨΊͷ։ൃڥߏங • ࣍ϖʔδʹৄࡉ
%BUB4DJFODF#005$".1UI ՝ ڥߏஙʹ͍ͭͯ ։ൃݴޠ • 1ZUIPOҎ্ Ϟδϡʔϧ • TDJLJUMFBSO
• GMBTL • 8FSL[FVH • 85'PSNT ϩʔΧϧ1$ͷ։ൃڥʹ͍ͭͯ • %":Ҏ߱EPDLFSίϯςφΛͬͨԾڥʹɺੳڥΛߏ ங͠·͢ɻ ϨϕϧΞοϓ͍ͨ͠ํԾڥͷதʹɺγϯάϧΞϓ Ϧέʔγϣϯͷ։ൃڥΛߏஙͯ͠Έ·͠ΐ͏ɻ