Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
データ分析プロセス/AIアプリケーションの基本設計
Search
h-fkn
July 26, 2019
Technology
0
180
データ分析プロセス/AIアプリケーションの基本設計
DataScienceBOOTCAMP 5th day2
h-fkn
July 26, 2019
Tweet
Share
More Decks by h-fkn
See All by h-fkn
The advantages and disadvantages of using machine learning with enebular
fkn0839
0
250
ラズパイで写真を撮った話_IoTLT_vol.66_2200812.pdf
fkn0839
0
400
俺のNETFLIX season2 AmazonPersonalize
fkn0839
0
470
俺のNETFLIX season1
fkn0839
0
240
ゆるふわマシーンラーニング#2_内容調整中()
fkn0839
0
300
ゆるふわマシーンラーニング「❝ Google AutoML Tablesでお手軽AI ❞と題して話すつもりだったけど、実際に使ったらお手軽()だった件について5分以内で話す」
fkn0839
1
4.1k
DataScienceBOOTCAMP5th_part1
fkn0839
0
1.9k
G'SACADEMY LAB5th DataScience
fkn0839
0
200
AIアプリ開発に「目的設定」が大切な理由
fkn0839
0
130
Other Decks in Technology
See All in Technology
Oracle Database@Google Cloud:サービス概要のご紹介
oracle4engineer
PRO
0
110
AI専用のリンターを作る #yumemi_patch
bengo4com
5
4.3k
MUITにおける開発プロセスモダナイズの取り組みと開発生産性可視化の取り組みについて / Modernize the Development Process and Visualize Development Productivity at MUIT
muit
1
16k
Core Audio tapを使ったリアルタイム音声処理のお話
yuta0306
0
190
Delta airlines®️ USA Contact Numbers: Complete 2025 Support Guide
airtravelguide
0
340
品質と速度の両立:生成AI時代の品質保証アプローチ
odasho
1
340
Should Our Project Join the CNCF? (Japanese Recap)
whywaita
PRO
0
340
Lazy application authentication with Tailscale
bluehatbrit
0
210
2025-07-06 QGIS初級ハンズオン「はじめてのQGIS」
kou_kita
0
170
IPA&AWSダブル全冠が明かす、人生を変えた勉強法のすべて
iwamot
PRO
2
130
20250705 Headlamp: 專注可擴展性的 Kubernetes 用戶界面
pichuang
0
270
オーティファイ会社紹介資料 / Autify Company Deck
autifyhq
10
130k
Featured
See All Featured
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
50
5.5k
XXLCSS - How to scale CSS and keep your sanity
sugarenia
248
1.3M
How GitHub (no longer) Works
holman
314
140k
Connecting the Dots Between Site Speed, User Experience & Your Business [WebExpo 2025]
tammyeverts
6
300
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
34
3.1k
10 Git Anti Patterns You Should be Aware of
lemiorhan
PRO
656
60k
Sharpening the Axe: The Primacy of Toolmaking
bcantrill
44
2.4k
Scaling GitHub
holman
460
140k
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
107
19k
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
251
21k
Rebuilding a faster, lazier Slack
samanthasiow
82
9.1k
The Cost Of JavaScript in 2023
addyosmani
51
8.5k
Transcript
σʔλੳϓϩηε %BUB4DJFODF#005$".1ୈظ
ΧϦΩϡϥϜ %BUB4DJFODF#005$".1UI
%BUB4DJFODF#005$".1UI ΧϦΩϡϥϜ
%BUB4DJFODF#005$".1UI ΧϦΩϡϥϜ • άϧʔϓϫʔΫ • ػցֶश • ౷ܭֶ •
%BUBCBTF • ϏδωεޮՌ • ϓϩτλΠϓ։ൃ • ϨϙʔςΟϯά
%BUB4DJFODF#005$".1UI ίϯηϓτ શճͷߨٛͰ$3*41%.Λ࠷࠷Ͱप͠Α͏ $3*41%. $3PTT*OEVTUSZ4UBOEBSE1SPDFTTGPS%BUB.JOJOH ɺ σʔλੳϓϩδΣΫτͷϓϩηεϞσϧ #VTJOFTT 6OEFSTUBOEJOH
%FWFMPQNFOU %BUB 6OEFSTUBOEJOH &WBMVBUJPO %BUB 1SFQBSBUJPO .PEFMJOH
%BUB4DJFODF#005$".1UI ߨٛఔ શճͷߨٛͰ$3*41%.Λ࠷࠷Ͱप͠Α͏ ビジネス理解 Business Understanding データ理解 Data Understanding
データ準備 Data Preparation モデリング Modeling 性能評価 Evaluation 開発 Development $3*41%.ʢσʔλੳϓϩηεʣ %": Ր %": ۚ %": Ր %": ۚ %": ۚ
%BUB4DJFODF#005$".1UI ߨٛఔ શճͷߨٛͰ$3*41%.Λ࠷࠷Ͱप͠Α͏ ビジネス理解 Business Understanding データ理解 Data Understanding
データ準備 Data Preparation モデリング Modeling 性能評価 Evaluation 開発 Development $3*41%.ʢσʔλੳϓϩηεʣ %": Ր %": ۚ %": Ր %": ۚ %": ۚ
%BUB4DJFODF#005$".1UI ߨٛఔ શճͷߨٛͰ$3*41%.Λ࠷࠷Ͱप͠Α͏ ビジネス理解 Business Understanding データ理解 Data Understanding
データ準備 Data Preparation モデリング Modeling 性能評価 Evaluation 開発 Development $3*41%.ʢσʔλੳϓϩηεʣ %": Ր %": ۚ %": Ր %": ۚ %": ۚ ڥߏங
%BUB4DJFODF#005$".1UI ౸ୡඪ શճͷߨٛͰ$3*41%.Λ࠷࠷Ͱप͠Α͏ ビジネス理解 Business Understanding データ理解 Data Understanding
データ準備 Data Preparation モデリング Modeling 性能評価 Evaluation 開発 Development $3*41%.ʢσʔλੳϓϩηεʣ %": Ր %": ۚ %": Ր %": ۚ %": ۚ
%BUB4DJFODF#005$".1UI ౸ୡඪ $3*41%. ߨٛ༰ ౸ୡඪ %": Ϗδωεཧղ σʔλαΠΤϯε֓ اըΛϞσϧԽͰ͖Δ
%": ୳ࡧతσʔλղੳʙ ϞσϦϯά σʔλੳϓϩηε ϞσϦϯά·Ͱͷ ྲྀΕΛཧղ͍ͯ͠Δ %": ։ൃ γϯάϧΞϓϦέʔγϣϯʹϞσϧΛΈࠐΉ ʢ'MBTLΛͬͨ8FC"QQϓϩάϥϛϯάʣ 8FC։ൃͷͨΊͷ 1ZUIPOϓϩάϥϛϯά %": ։ൃ γϯάϧΞϓϦέʔγϣϯʹϞσϧΛΈࠐΉ ʢ'MBTLΛͬͨ8FC"QQϓϩάϥϛϯάʣ ಉ্ %": Ϗδωεཧղ ϨϙʔςΟϯάɾࢿରޮՌܭࢉ σʔλΛదʹՄࢹԽ ϏδωεཱҊͰ͖Δ
%BUB4DJFODF#005$".1UI ౸ୡඪ $3*41%. ߨٛ༰ ౸ୡඪ %": Ϗδωεཧղ σʔλαΠΤϯε֓ اըΛϞσϧԽͰ͖Δ
%": ୳ࡧతσʔλղੳʙ ϞσϦϯά σʔλੳϓϩηε ϞσϦϯά·Ͱͷ ྲྀΕΛཧղ͍ͯ͠Δ %": ։ൃ γϯάϧΞϓϦέʔγϣϯʹϞσϧΛΈࠐΉ ʢ'MBTLΛͬͨ8FC"QQϓϩάϥϛϯάʣ 8FC։ൃͷͨΊͷ 1ZUIPOϓϩάϥϛϯά %": ։ൃ γϯάϧΞϓϦέʔγϣϯʹϞσϧΛΈࠐΉ ʢ'MBTLΛͬͨ8FC"QQϓϩάϥϛϯάʣ ಉ্ %": Ϗδωεཧղ ϨϙʔςΟϯάɾࢿରޮՌܭࢉ σʔλΛదʹՄࢹԽ ϏδωεཱҊͰ͖Δ
લճͷৼΓฦΓ %BUB4DJFODF#005$".1UI
%BUB4DJFODF#005$".1UI "*։ൃϓϩδΣΫτͷਐΊํ IUUQTGPSNSVO!QSPUPUZQFNPEFMJOH ࣮ݱ͍ͨ͜͠ͱΛϞσϧʹͦ͏ ԾઆͱσʔλΛඥ͚ͯΈΑ͏
%BUB4DJFODF#005$".1UI "*։ൃϓϩδΣΫτͷਐΊํ "*։ൃ·Ͱͷεςοϓ γεςϜ։ൃ ػցֶशɾϞσϦϯά σʔλੳ ֶश༻σʔληοτ࡞ ୳ࡧతσʔλղੳ σʔλऩूɾੵ
తઃఆ 45&1 45&1 45&1 45&1 45&1 45&1 45&1
%BUB4DJFODF#005$".1UI "*։ൃϓϩδΣΫτͷਐΊํ 課題 データがある データがない ⾃動化できる ⾃動化できない 判断必要な業務 判断不要な業務
AI 取り組む 取り組まない データ収集 取り残される 取り組む 取り組まない ⼈⼒ 取り残される RPA AI 投資対効果 中 投資対効果 中 投資対効果 低 投資対効果 ⼤ PoC
σʔλੳϓϩηε %BUB4DJFODF#005$".1ୈظ
%BUB4DJFODF#005$".1UI "*։ൃϓϩδΣΫτͷਐΊํ "*։ൃ·Ͱͷεςοϓ γεςϜ։ൃ ػցֶशɾϞσϦϯά σʔλੳ ֶश༻σʔληοτ࡞ ୳ࡧతσʔλղੳ σʔλऩूɾੵ
తઃఆ 45&1 45&1 45&1 45&1 45&1 45&1 45&1
%BUB4DJFODF#005$".1UI σʔλੳϓϩηε ୳ࡧతσʔλղੳ 㲈 هड़౷ܭʹ͍ۙ ݱঢ়ͷѲ ෳࡶͳσʔλΛγϯϓϧͳܗʹ͢Δ͜ͱͰਓؒʹͱͬͯཧղ͘͢͢͠Δʢهड़౷ܭʣ σʔλੳ 㲈
ਪ౷ܭʹ͍ۙ ະདྷͷ༧ଌ Կ͔ҙࢥܾఆΛ͢Δͱ͖ͷͨΊͷϑϨʔϜϫʔΫΛɺతͷ݁Ռ͕ى͜Δ֬Λࢉग़͢Δʢਪଌ౷ܭʣ ˝ ະདྷΛ༧ଌ͢ΔͨΊʹɺࠓͲ͏͍͏ঢ়ଶ͔ΛΔඞཁ͕͋Δɻ ͭ·Γɺ୳ࡧతσʔλղੳͳ͠ʹϞσϧߏஙͰ͖ͳ͍
%BUB4DJFODF#005$".1UI σʔλੳϓϩηε ୳ࡧతσʔλղੳͱ σʔλΛੳ͢Δલʹɺཧղ͢Δ • ूܭΛ͓͜ͳ͏ • ྻ໊ʢDPMVNOʣͷҙຯΛཧղ͢Δ •
ߦʢJOEFYʣʹ֨ೲ͞Ε͍ͯΔςΩετͷҙຯΛཧղ͢Δ
%BUB4DJFODF#005$".1UI σʔλੳϓϩηε ҙຯͷཧղ ྻͷҙຯΛΔ શମͷѲ σʔλͷେ͖͞ΛௐΔ
ݸͷѲ σʔλݸΛ্͑͛Δ ࣭ͷѲ ܽଛΛௐΔ ج४ͷൃݟ هड़౷ܭྔΛࢉग़͢Δ ภΓͷൃݟ άϥϑʢՄࢹԽ͢Δ͜ͱʣͰཧղ͢Δ
%BUB4DJFODF#005$".1UI σʔλੳϓϩηε ҙຯͷཧղ εϓϨουγʔτ༁ؔ શମͷѲ TIBQF
ݸͷѲ DPVOU ࣭ͷѲ ಉ্ʢࠓճεΩοϓʣ ج४ͷൃݟ EFTDSJCF ภΓͷൃݟ άϥϑʢՄࢹԽ͢Δ͜ͱʣͰཧղ͢Δ σʔλܕΛௐΔ EUZQFT
%BUB4DJFODF#005$".1UI σʔλੳϓϩηε ಈతܕ͚ݴޠ ܭࢉ͢ΔͨΊͷϥΠϒϥϦ σʔλΛѻ͏ͨΊͷϥΠϒϥϦ ػցֶशΛ͢ΔͨΊͷϥΠϒϥϦ ՄࢹԽ͢ΔͨΊͷϥΠϒϥϦ
50,:0-"#$0634&UI %&1-0:ϑΣʔζ %BUB4DJFODF σʔλੳϓϩηε • $PMBCPSBUPSZɺશʹΫϥυͰ࣮ߦ͞ΕΔ +VQZUFSϊʔτϒοΫڥͰ͢ɻ • ઃఆෆཁͰɺແྉͰ͝ར༻ʹͳΕ·͢ɻ
• $PMBCPSBUPSZΛ༻͢Δͱɺίʔυͷهड़ͱ࣮ߦɺղੳͷอଘڞ༗ɺڧྗͳίϯϐϡʔ ςΟϯά ϦιʔεͷΞΫηεͳͲΛϒϥβ͔Βͯ͢ແྉͰߦ͑·͢ɻ
50,:0-"#$0634&UI %&1-0:ϑΣʔζ %BUB4DJFODF σʔλੳϓϩηε
ϞσϦϯάجૅ %BUB4DJFODF#005$".1UI
ڭࢣ͋ΓֶशͰΑ͘͏ʮճؼʯͱʮྨʯ 回帰 未知のデータから連続する数値を予測する 分類 未知のデータから離散値(カテゴリ)を予測する • そのワインどれくらい美味しいかを数字で表現 • 今後、そのワインを何回買うであろうかを予測 •
そのワインは 美味しい or 美味しくない • そのワインはどんな種類︖(ボルドー or ブルゴーニュ)
%BUB4DJFODF#005$".1UI ϞσϦϯάجૅ ϞσϦϯάͷखॱ σʔληοτΛׂ͢Δ తมͱઆ໌ม ֶशσʔλͱݕূσʔλ
ػցֶश ΞϧΰϦζϜબఆ ަࠩݕূʢֶशํ๏ʣ ਫ਼ݕূ ग़ྗ
%BUB4DJFODF#005$".1UI ϞσϦϯάجૅ ࣮ࡍʹࣗͯ͠ΈΑ͏ • ඪ • ࠷ඪɿσʔλͷՄࢹԽ·Ͱ • ཧඪɿػցֶशʙϞσϦϯά·Ͱʢୠ͠ɺਫ਼Θͳ͍ʣ
• ࣌ؒɿʙ • ൃදɿ֤άϧʔϓʢʙʣ • ௐΔͱ͖ͷώϯτ • ΤϥʔϝοηʔδͰάάΔʂσʔλ໊໊ؔͰάάΔʂ
%BUB4DJFODF#005$".1UI ϞσϦϯάجૅ ࣮ࡍʹࣗͯ͠ΈΑ͏ • ඪ • ࠷ඪɿσʔλͷՄࢹԽ·Ͱ • ཧඪɿػցֶशʙϞσϦϯά·Ͱʢୠ͠ɺਫ਼Θͳ͍ʣ
• ࣌ؒɿʙ • ൃදɿ֤άϧʔϓʢʙʣ • ௐΔͱ͖ͷώϯτ • ΤϥʔϝοηʔδͰάάΔʂσʔλ໊໊ؔͰάάΔʂ ֤άϧʔϓͷൃදͱਐḿʹ߹Θͤͯɺ ࣍ճʮϞσϦϯάղઆ̎ʯΛՃ͢Δ͔அ͠·͢ʂ
͘͘λΠϜ %BUB4DJFODF#005$".1UI
%BUB4DJFODF#005$".1UI ϞσϦϯάجૅ ͘͘ձͷςʔϚΛܾΊΑ͏ $IBJOFSνϡʔτϦΞϧͰ ॏճؼੳ·ͰͬͯΈͨ ,BHHMFͷσʔληοτ Λͬͯ͘͘ ಠΓͰ ͯ͘͘͠Έ͍ͨ
,BHHMFͷσʔληοτ Λͬͯ͘͘ 8JOFσʔλ PS Ұॹʹ$IBJOFSνϡʔτϦΞϧ ΈΜͳ͕ σʔλੳʙϞσϦϯά ·Ͱܦݧ͍ͯ͠Δ :&4 /0 ͪΐͬͱෆ҆ͩ ઓͯ͠ΈΔʂ ࠓ ͷ ඪ
%BUB4DJFODF#005$".1UI ϞσϦϯάجૅ ·ͣҰॹʹ$IBJOFSνϡʔτϦΞϧ
%BUB4DJFODF#005$".1UI ϞσϦϯάجૅ ͘͘ձͷϧʔϧ • άϧʔϓϝϯόʔʹฉ͍ͯΈΑ͏ • εϓϨουγʔτͰͰ͖Δ͜ͱɺͬͯΈΑ͏ • ؆୯ͳूܭɺՄࢹԽ1ZUIPOͰΒͳͯ͘Α͍
• Τϥʔʹ׳ΕΑ͏ • ΤϥʔͷղܾࡦΛൃද͠Α͏ • ʮʙʙʙ·ͰͰ͖ͨʂʯ͕େͰ͢ʂ
࣍ճ༧ࠂ %BUB4DJFODF#005$".1UI
%BUB4DJFODF#005$".1UI ౸ୡඪ શճͷߨٛͰ$3*41%.Λ࠷࠷Ͱप͠Α͏ ビジネス理解 Business Understanding データ理解 Data Understanding
データ準備 Data Preparation モデリング Modeling 性能評価 Evaluation 開発 Development $3*41%.ʢσʔλੳϓϩηεʣ %": Ր %": ۚ %": Ր %": ۚ %": ۚ
"*ΞϓϦέʔγϣϯͷجຊઃܭ༷ %BUB4DJFODF#005$".1ୈظ
50,:0-"#$0634&UI %&1-0:ϑΣʔζ %BUB4DJFODF ڭࢣ͋ΓֶशϞσϧͷ߹ データセット 予測のもととなるデー タ モデル モデルが予測結果を
計算 教師データ 正しい結果 予測結果データ モデルが予測した結 果 データセット 予測のもととなるデー タ 性能評価 達成基準を満たして いるか モデル修正 達成基準を満たして いるか 最終モデル 完成 運⽤へ 機械学習 機械学習データセット 機械学習する対象
50,:0-"#$0634&UI %&1-0:ϑΣʔζ %BUB4DJFODF "*ΞϓϦέʔγϣϯ։ൃ 教師データ 正しい結果 データセット 予測のもととなるデータ 機械学習データセット
機械学習する対象 ⾝⻑(cm) 体重(kg) 性別 171.7 63.4 男性 154.2 50.1 ⼥性 ︙ ︙ ︙ 165.7 45.8 ⼥性 ⾝⻑(cm) 体重(kg) 171.7 63.4 154.2 50.1 ︙ ︙ 165.7 45.8 ⾝⻑(cm) 体重(kg) 性別 171.7 63.4 154.2 50.1 ︙ ︙ 165.7 45.8 ⾝⻑(cm) 体重(kg) 性別 171.7 63.4 男性 154.2 50.1 ⼥性 ︙ ︙ ︙ 165.7 45.8 ⼥性 学習⽤データセット 検証⽤データセット 結果を説明できる要素 説明変数 予測したい結果・⽬的 ⽬的変数
50,:0-"#$0634&UI %&1-0:ϑΣʔζ %BUB4DJFODF ڭࢣ͋ΓֶशϞσϧͷ߹ モデル モデルが予測結果を 計算 性能評価 達成基準を満たして
いるか モデル修正 達成基準を満たして いるか 最終モデル 完成 運⽤へ 機械学習 ⽬的変数 判断結果(答え) = 性別 説明変数 判断するために必要な要素 出⼒データ 答えが追加されたデータ ⼊⼒データ 答えがわからないデータ
50,:0-"#$0634&UI %&1-0:ϑΣʔζ %BUB4DJFODF "*ΞϓϦέʔγϣϯ։ൃ ڭࢣσʔλ ʢ: 9 9ʜʣ ༧ଌ
Ϟσϧ ༧ଌ݁Ռ ʢ:ʣ ೖྗ ग़ྗ
50,:0-"#$0634&UI %&1-0:ϑΣʔζ %BUB4DJFODF "*ΞϓϦέʔγϣϯ։ൃ ڭࢣσʔλ ʢ: 9 9ʜʣ ༧ଌ
Ϟσϧ ༧ଌ݁Ռ ʢ:ʣ ೖྗ ग़ྗ ༧ଌ Ϟσϧ ະͷσʔλ ೖྗ ༧ଌ݁Ռ ʢ:ʣ ग़ྗ
50,:0-"#$0634&UI %&1-0:ϑΣʔζ %BUB4DJFODF "*ΞϓϦέʔγϣϯ։ൃ ༧ଌ Ϟσϧ ະͷσʔλ ೖྗ ༧ଌ݁Ռ
ʢ:ʣ ग़ྗ ೖྗϑΥʔϜ ग़ྗ݁Ռදࣔ
50,:0-"#$0634&UI %&1-0:ϑΣʔζ %BUB4DJFODF "*ΞϓϦέʔγϣϯ։ൃ ༧ଌ Ϟσϧ ະͷσʔλ ೖྗ ༧ଌ݁Ռ
ʢ:ʣ ग़ྗ ೖྗϑΥʔϜ ग़ྗ݁Ռදࣔ ⼊⼒画⾯ HTML, CSS, JS 結果表⽰画⾯ HTML, CSS, JS
50,:0-"#$0634&UI %&1-0:ϑΣʔζ %BUB4DJFODF "*ΞϓϦέʔγϣϯ։ൃ ༧ଌ Ϟσϧ ະͷσʔλ ೖྗ ༧ଌ݁Ռ
ʢ:ʣ ग़ྗ ೖྗϑΥʔϜ ग़ྗ݁Ռදࣔ ⼊⼒画⾯ HTML, CSS, JS 結果表⽰画⾯ HTML, CSS, JS σʔλΛೖྗ͢Δը໘Λ࡞ ݁ՌΛग़ྗ͢Δը໘Λ࡞
50,:0-"#$0634&UI %&1-0:ϑΣʔζ %BUB4DJFODF "*ΞϓϦέʔγϣϯ։ൃ ༧ଌ Ϟσϧ ະͷσʔλ ೖྗ ༧ଌ݁Ռ
ʢ:ʣ ग़ྗ ೖྗϑΥʔϜ ग़ྗ݁Ռදࣔ モデル Python
50,:0-"#$0634&UI %&1-0:ϑΣʔζ %BUB4DJFODF "*ΞϓϦέʔγϣϯ։ൃ ༧ଌ Ϟσϧ ະͷσʔλ ೖྗ ༧ଌ݁Ռ
ʢ:ʣ ग़ྗ ೖྗϑΥʔϜ ग़ྗ݁Ռදࣔ モデル Python ϞσϧΛग़ྗ͠ɺ ΞϓϦέʔγϣϯʹΈࠐΉ
՝ %BUB4DJFODF#005$".1UI
%BUB4DJFODF#005$".1UI ՝ σʔλੳ͔ΒϞσϦϯά·ͰͷྲྀΕΛ෮श͢Δ • ,BHHMF͔ΒҙͷσʔληοτΛ༻͠ɺ σʔλੳʙϞσϦϯάΛߦ͏ʢ࣍ճಉ͡Α͏ʹൃදʣ • ݅ڭࢣ͋Γֶशʢճؼ PSྨϞσϧʣ
• ࣍ճͷͨΊͷ։ൃڥߏங • ࣍ϖʔδʹৄࡉ
%BUB4DJFODF#005$".1UI ՝ ڥߏஙʹ͍ͭͯ ։ൃݴޠ • 1ZUIPOҎ্ Ϟδϡʔϧ • TDJLJUMFBSO
• GMBTL • 8FSL[FVH • 85'PSNT ϩʔΧϧ1$ͷ։ൃڥʹ͍ͭͯ • %":Ҏ߱EPDLFSίϯςφΛͬͨԾڥʹɺੳڥΛߏ ங͠·͢ɻ ϨϕϧΞοϓ͍ͨ͠ํԾڥͷதʹɺγϯάϧΞϓ Ϧέʔγϣϯͷ։ൃڥΛߏஙͯ͠Έ·͠ΐ͏ɻ