Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
AIアプリ開発に「目的設定」が大切な理由
Search
h-fkn
June 09, 2019
Technology
0
100
AIアプリ開発に「目的設定」が大切な理由
バイオスブートキャンプでの講義「PythonでAIアプリを作ってみよう」での登壇資料です。
h-fkn
June 09, 2019
Tweet
Share
More Decks by h-fkn
See All by h-fkn
The advantages and disadvantages of using machine learning with enebular
fkn0839
0
230
ラズパイで写真を撮った話_IoTLT_vol.66_2200812.pdf
fkn0839
0
340
俺のNETFLIX season2 AmazonPersonalize
fkn0839
0
370
俺のNETFLIX season1
fkn0839
0
210
ゆるふわマシーンラーニング#2_内容調整中()
fkn0839
0
250
ゆるふわマシーンラーニング「❝ Google AutoML Tablesでお手軽AI ❞と題して話すつもりだったけど、実際に使ったらお手軽()だった件について5分以内で話す」
fkn0839
1
4k
データ分析プロセス/AIアプリケーションの基本設計
fkn0839
0
170
DataScienceBOOTCAMP5th_part1
fkn0839
0
1.9k
G'SACADEMY LAB5th DataScience
fkn0839
0
180
Other Decks in Technology
See All in Technology
TypeScriptの次なる大進化なるか!? 条件型を返り値とする関数の型推論
uhyo
2
1.8k
EventHub Startup CTO of the year 2024 ピッチ資料
eventhub
0
130
Storybook との上手な向き合い方を考える
re_taro
5
1.5k
Amplify Gen2 Deep Dive / バックエンドの型をいかにしてフロントエンドへ伝えるか #TSKaigi #TSKaigiKansai #AWSAmplifyJP
tacck
PRO
0
400
生成AIが変えるデータ分析の全体像
ishikawa_satoru
0
180
20241120_JAWS_東京_ランチタイムLT#17_AWS認定全冠の先へ
tsumita
2
310
FlutterアプリにおけるSLI/SLOを用いたユーザー体験の可視化と計測基盤構築
ostk0069
0
120
VideoMamba: State Space Model for Efficient Video Understanding
chou500
0
200
プロダクト活用度で見えた真実 ホリゾンタルSaaSでの顧客解像度の高め方
tadaken3
0
220
誰も全体を知らない ~ ロールの垣根を超えて引き上げる開発生産性 / Boosting Development Productivity Across Roles
kakehashi
2
240
適材適所の技術選定 〜GraphQL・REST API・tRPC〜 / Optimal Technology Selection
kakehashi
1
720
初心者向けAWS Securityの勉強会mini Security-JAWSを9ヶ月ぐらい実施してきての近況
cmusudakeisuke
0
140
Featured
See All Featured
For a Future-Friendly Web
brad_frost
175
9.4k
How to Create Impact in a Changing Tech Landscape [PerfNow 2023]
tammyeverts
47
2.1k
Fireside Chat
paigeccino
34
3k
Optimizing for Happiness
mojombo
376
70k
Ruby is Unlike a Banana
tanoku
97
11k
Building Your Own Lightsaber
phodgson
103
6.1k
How GitHub (no longer) Works
holman
310
140k
Typedesign – Prime Four
hannesfritz
40
2.4k
Facilitating Awesome Meetings
lara
50
6.1k
CoffeeScript is Beautiful & I Never Want to Write Plain JavaScript Again
sstephenson
159
15k
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
31
2.7k
The World Runs on Bad Software
bkeepers
PRO
65
11k
Transcript
PythonでAIアプリを作ってみよう AIアプリ開発の進め⽅を学ぼう1 @hidefkn 2019-05-30@デジタルハリウッド⼤学院
⾃⼰紹介 ぬるさくAIアプリ開発勉強会 1 • ふかの ひで @hidefkn • 現職:某AIスタートアップ(7→14名?) •
経歴:コンサル→エンジニア→データサイエンティスト • プログラミング歴:およそ2年 • 趣味:ネトフリにハマってます。
AIアプリ開発の本を書きました ぬるさくAIアプリ開発勉強会 2 技術書典6にて、Nuxt.jsとPythonでつくる『ぬるさくAIアプリ開発⼊⾨』という技術書を書きました。 プログラミングスクールの同期と⼆⼈で書きました。 https://booth.pm/ja/items/1296418
⼤切にしたいこと ぬるさくAIアプリ開発勉強会 3 戦わずして勝つ まずはできる範囲でやってみて、楽しむ! 難しく考えて、無理にすべてを理解しようとしないこと!(戦わない)
講義の構成 ぬるさくAIアプリ開発勉強会 4 【前提編】 ⼈⼯知能と機械学習とデータ分析 【理論編】 第1章 AIアプリ開発の進め⽅ 第2章 スコアリングモデル概論
【実装編】 第3章 スコアリングモデル構築 第4章 NuxtでAIアプリのフロントを作ろう 第5章 PythonでAPIを作成しよう 第6章 AIアプリをデプロイしよう 本⽇の学習範囲
ぬるさくAIアプリ開発勉強会 5 AIアプリ開発の進め⽅ AIアプリ開発をするために必要な7つのステップ
AIアプリ開発の7つのステップ ぬるさくAIアプリ開発勉強会 6 AIアプリを作るためには、1つずつステップを踏んでいく必要がある。AI開発に王道なし。
AIアプリ開発の7つのステップ ぬるさくAIアプリ開発勉強会 7 AIアプリを作るためには、1つずつステップを踏んでいく必要がある。AI開発に王道なし。 本⽇の講義範囲
何を解決するために、AIアプリを開発するのか? ぬるさくAIアプリ開発勉強会 8 予測 モデル データ ⼊⼒ 予測結果 出⼒ モデルは課題を
解決するための⼿段 予測結果をもとに、 実現したい状態 = ⽬的 AIは課題を解決するための⼿段であり、⽬的ではない。
AIアプリ開発は⼿戻りコストが⼤きい ぬるさくAIアプリ開発勉強会 9 STEP1 ⽬的設定 データ分析 モデルが変われば、 データ分析も変わる DB設計 ⽬的に適した
クラウドDBを選定する AI投資対効果 アプリ開発・データ分析・運⽤ コストがかかる 通常のWebアプリ開発(Webサービス開発)よりも、 考えるべきことが多い ≒ ⼿戻りコストが⼤きい
⽬的に必要なデータセットを作ろう ぬるさくAIアプリ開発勉強会 10 データ量よりも前に、データ品質が重要である。モデル構築に必要なデータセットを作ることができるのか? たくさんのデータベースを 保有していても、AIは作れない 機械学習⽤のデータセットを ⽤意できるか?が重要
⽬的設定とは、何のために何をどうするのか?を明確にすること ぬるさくAIアプリ開発勉強会 11 STEP1 ⽬的設定 • 分類 未知のデータからクラスを予測 • 回帰
未知のデータから連続値を予測 • クラスタリング データから何かしらの基準でグルーピング • 次元削減 ⾼次元のデータを低次元にマッピング 初学者は、分類と回帰の2つの違いを しっかり理解すれば⼗分
事例: 幸せになるために、私の理想の結婚相⼿を⾃動的に判別したい ぬるさくAIアプリ開発勉強会 12 STEP1 ⽬的設定 • 分類 未知のデータからクラスを予測 •
Aさんは理想のタイプ「優しい系」Bさんは「オラオラ系」 • 回帰 未知のデータから連続値を予測 • Aさんは理想の結婚相⼿ではない(0),である(1) • Bさんは理想の結婚相⼿である確率は78%
私の理想の結婚相⼿を⾒極め⽅が異なる ぬるさくAIアプリ開発勉強会 13 ⽬的設定とは、どんなAIを作りたいのか?を明確にすること。 • 分類 未知のデータからクラスを予測 • Aさんは理想のタイプの「優しい系」Bさんは「オラオラ系」 •
回帰 未知のデータから連続値を予測 • Aさんは理想の結婚相⼿ではない(0),である(1) • Bさんは理想の結婚相⼿である確率は78%
事例: 私の理想の結婚相⼿を⾒極める ぬるさくAIアプリ開発勉強会 14 STEP1 ⽬的設定 • 分類 未知のデータからクラスを予測 •
Aさんは理想のタイプ「優しい系」Bさんは「オラオラ系」 • 回帰 未知のデータから連続値を予測 • Aさんは理想の結婚相⼿ではない(0),である(1) • Bさんは理想の結婚相⼿である確率は78%
⽬的に合わせて、作りたいモデルを具体的にしよう ぬるさくAIアプリ開発勉強会 15 STEP1 ⽬的設定 • 推薦 ユーザーの好みに合わせた提⽰ • 異常検知
不審な挙動を検知 • 頻出パターンマイニング ⾼頻度で出現するパターンを抽出 • 強化学習 正解が不明確な状況で⾏動⽅針を学習
難しい⾔葉は、具体例と紐づけて理解しよう ぬるさくAIアプリ開発勉強会 16 STEP1 ⽬的設定 • 推薦 ユーザーの好みに合わせた提⽰ • 異常検知
不審な挙動を検知 • 頻出パターンマイニング ⾼頻度で出現するパターンを抽出 • 強化学習 正解が不明確な状況で⾏動⽅針を学習
まとめ ぬるさくAIアプリ開発勉強会 17 なぜ、具体化させる必要があるのか? それは、分析⽅法もモデルの作り⽅(構築⽅法)も変わってくるから。 • ⽬的によって、構築するモデルは変わる • モデルが変わると分析⽅針が変わる •
事例: • 理想の結婚相⼿を確率予測するモデル • 理想の結婚相⼿のタイプを分類するモデルは、似て⾮なるモデル
⽬的設定のおさらい ぬるさくAIアプリ開発勉強会 18 曖昧な理解を、ざっくりでいいから、はっきりと理解しよう。 • AI開発で⼤切なことは何ですか? • 機械学習で作れるモデルには、どのような種類がありますか? (2つ以上挙げてみよう) •
なぜ、⽬的やモデルを具体的にする必要がありますか?