Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Statistical Thinking for Data Science
Search
Chris Fonnesbeck
February 08, 2015
Science
5
1.1k
Statistical Thinking for Data Science
PyTennessee 2015 Keynote Address
Chris Fonnesbeck
February 08, 2015
Tweet
Share
More Decks by Chris Fonnesbeck
See All by Chris Fonnesbeck
Structured Decision-making and Adaptive Management For The Control Of Infectious Disease
fonnesbeck
3
100
Estimating Microbial Diversity
fonnesbeck
0
110
Bayesian Statistical Analysis: A Gentle Introduction
fonnesbeck
4
620
Other Decks in Science
See All in Science
As We May Interact: Challenges and Opportunities for Next-Generation Human-Information Interaction
signer
PRO
0
380
学術講演会中央大学学員会大分支部
tagtag
0
120
重複排除・高速バックアップ・ランサムウェア対策 三拍子そろったExaGrid × Veeam連携セミナー
climbteam
0
190
眼科AIコンテスト2024_特別賞_6位Solution
pon0matsu
0
290
Snowflakeによる統合バイオインフォマティクス
ktatsuya
0
610
最適化超入門
tkm2261
14
3.5k
06_浅井雄一郎_株式会社浅井農園代表取締役社長_紹介資料.pdf
sip3ristex
0
150
統計学入門講座 第1回スライド
techmathproject
0
230
[第62回 CV勉強会@関東] Long-CLIP: Unlocking the Long-Text Capability of CLIP / kantoCV 62th ECCV 2024
lychee1223
1
860
02_西村訓弘_プログラムディレクター_人口減少を機にひらく未来社会.pdf
sip3ristex
0
140
サイゼミ用因果推論
lw
1
3.3k
Visual Analytics for R&D Intelligence @Funding the Commons & DeSci Tokyo 2024
hayataka88
0
140
Featured
See All Featured
Principles of Awesome APIs and How to Build Them.
keavy
126
17k
The Straight Up "How To Draw Better" Workshop
denniskardys
232
140k
The Psychology of Web Performance [Beyond Tellerrand 2023]
tammyeverts
46
2.3k
Speed Design
sergeychernyshev
27
810
The Cult of Friendly URLs
andyhume
78
6.2k
Fashionably flexible responsive web design (full day workshop)
malarkey
406
66k
Why You Should Never Use an ORM
jnunemaker
PRO
55
9.2k
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
45
9.4k
4 Signs Your Business is Dying
shpigford
182
22k
Building Adaptive Systems
keathley
40
2.4k
Thoughts on Productivity
jonyablonski
69
4.5k
Done Done
chrislema
182
16k
Transcript
Statistical Thinking for Data Science Chris Fonnesbeck Vanderbilt University
None
None
21/22 falling 7+ stories survived
2 fell together
40% at night
“Even more surprising, the longer the fall, the greater the
chance of survival.”
2 to 32 stories (average = 5.5)
?
"... 132 such victims were admitted to the Animal Medical
Center on 62nd Street in Manhattan ..."
"Found" Data
convenience sample
Missing Data
Representative
Statistical Issues
Big Data
“With enough data, the numbers speak for themselves ” Chris
Anderson, Wired
Alfred Landon
Literary Digest Straw Poll
"Next week, the first answers from these ten million will
begin the incoming tide of marked ballots, to be triple-checked, verified, five-times cross-classified and totalled."
2.4 million returns
41 - 55
None
George Gallup
Sampled 50,000
66%
Random Sampling
None
Bias
None
None
Self-selection Bias
None
For some estimate of unknown quantity ,
p = 0.5 sample_sizes = [10, 100, 1000, 10000, 100000]
replicates = 1000 biases = [] for n in sample_sizes: bias = np.empty(replicates) for i in range(replicates): true_sample = np.random.normal(size=n) negative_values = true_sample<0 missing = np.random.binomial(1, p, n).astype(bool) observed_sample = true_sample[~(negative_values & missing)] bias[i] = observed_sample.mean() biases.append(bias)
None
Accuracy Mean Squared Error
“The numbers have no way of speaking for themselves” Nate
Silver
White House Big Data Partners Workshop
White House Big Data Partners Workshop 19 Participants 0 Statisticians
NSF Working Group on Big Data
NSF Working Group on Big Data 100 experts convened 0
statisticians
Moore Foundation Data Science Environments
Moore Foundation Data Science Environments 0 directors with statistical expertise
NIH BD2K Executive Committee
NIH BD2K Executive Committee 17 committee members 0 statisticians
Feeling left out?
It's our own fault
“Almost everything you learned in your college statistics course was
wrong”
Typical introductory statistics syllabus 1.Descriptive statistics and plotting
Typical introductory statistics syllabus 1.Descriptive statistics and plotting 2.Basic probability
Typical introductory statistics syllabus 1.Descriptive statistics and plotting 2.Basic probability
3.Hypothesis testing
Typical introductory statistics syllabus 1.Descriptive statistics and plotting 2.Basic probability
3.Hypothesis testing 4.Experimental design
Typical introductory statistics syllabus 1.Descriptive statistics and plotting 2.Basic probability
3.Hypothesis testing 4.Experimental design 5.ANOVA
Statistical Hypothesis Testing
None
None
Test Statistic
T-statistic
None
None
None
p-value
None
None
false positive rate
"The value for which , or 1 in 20, is
1.96 or nearly 2; it is convenient to take this point as a limit in judging whether a deviation ought to be considered significant or not." R.A. Fisher
p-value
the probability that the observed differences are due to chance
the probability that the observed differences are due to chance
a measure of the reliability of the result
a measure of the reliability of the result
the probability that the null hypothesis is true
the probability that the null hypothesis is true
"If an experiment were repeated infinitely, p represents the proportion
of values more extreme than the observed value, given that the null hypothesis is true."
H0 : Mean duckling body mass did not differ among
years.
H0 : Mean duckling body mass did not differ among
years.
H0 : The prevalence of autism spectrum disorder for males
and females were equal.
H0 : The prevalence of autism spectrum disorder for males
and females were equal.
H0 : The density of large trees in logged and
unlogged forest stands were equal
H0 : The density of large trees in logged and
unlogged forest stands were equal
Statistical Straw Man
Statistical hypotheses are not interesting
Hypothesis tests are not decision support tools
Multiple Comparisons
None
Family-wise Error Rate >>> 1. - (1. - 0.05) **
20 0.6415140775914581
import seaborn as sb import pandas as pd n =
20 r = 36 df = pd.concat([pd.DataFrame({'y':np.random.normal(size=n), 'x':np.random.random(n), 'replicate':[i]*n}) for i in range(r)]) sb.lmplot('x', 'y', df, col='replicate', col_wrap=6)
None
Statistically Significant!
None
"Despite a large statistical literature for multiple testing corrections, usually
it is impossible to decipher how much data dredging by the reporting authors or other research teams has preceded a reported research finding."
What's the Alternative?
Build models and use them to estimate things we care
about
Effect size estimation
Data-generating Model
None
None
Florida manatee Trichechus manatus
None
None
None
occupied?
occupied? available?
occupied? available? seen?
None
Estimating visibility
None
None
None
None
None
None
None
Bayesian Statistics
None
None
Bayes' Formula
Probabilistic Modeling
Evidence-based Medicine
ASD Interventions Research 19 independent studies 27 different interventions
None
None
None
None
None
None
None
None
None
None
None
“While everyone is looking at the polls and the storm,
Romney’s slipping into the presidency. ”
None
Heirarchical modeling
Pollster effects
None
None
None
None
Data Science
Data
Science
Those who ignore statistics are condemned to re-invent it. --
Brad Efron