Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Bayesian Statistical Analysis: A Gentle Introdu...
Search
Chris Fonnesbeck
December 05, 2011
Research
4
650
Bayesian Statistical Analysis: A Gentle Introduction
Get to know the Reverend Bayes.Reverend
Chris Fonnesbeck
December 05, 2011
Tweet
Share
More Decks by Chris Fonnesbeck
See All by Chris Fonnesbeck
Statistical Thinking for Data Science
fonnesbeck
5
1.3k
Structured Decision-making and Adaptive Management For The Control Of Infectious Disease
fonnesbeck
3
120
Estimating Microbial Diversity
fonnesbeck
0
130
Other Decks in Research
See All in Research
Community Driveプロジェクト(CDPJ)の中間報告
smartfukushilab1
0
170
2026年1月の生成AI領域の重要リリース&トピック解説
kajikent
0
280
A History of Approximate Nearest Neighbor Search from an Applications Perspective
matsui_528
1
160
Satellites Reveal Mobility: A Commuting Origin-destination Flow Generator for Global Cities
satai
3
500
[Devfest Incheon 2025] 모두를 위한 친절한 언어모델(LLM) 학습 가이드
beomi
2
1.4k
湯村研究室の紹介2025 / yumulab2025
yumulab
0
300
Multi-Agent Large Language Models for Code Intelligence: Opportunities, Challenges, and Research Directions
fatemeh_fard
0
120
視覚から身体性を持つAIへ: 巧緻な動作の3次元理解
tkhkaeio
0
190
さまざまなAgent FrameworkとAIエージェントの評価
ymd65536
1
420
AWSの耐久性のあるRedis互換KVSのMemoryDBについての論文を読んでみた
bootjp
1
460
LLMアプリケーションの透明性について
fufufukakaka
0
140
【SIGGRAPH Asia 2025】Lo-Fi Photograph with Lo-Fi Communication
toremolo72
0
110
Featured
See All Featured
Everyday Curiosity
cassininazir
0
130
Evolving SEO for Evolving Search Engines
ryanjones
0
130
Organizational Design Perspectives: An Ontology of Organizational Design Elements
kimpetersen
PRO
1
190
Dealing with People You Can't Stand - Big Design 2015
cassininazir
367
27k
Building the Perfect Custom Keyboard
takai
2
680
HU Berlin: Industrial-Strength Natural Language Processing with spaCy and Prodigy
inesmontani
PRO
0
220
Breaking role norms: Why Content Design is so much more than writing copy - Taylor Woolridge
uxyall
0
170
The Anti-SEO Checklist Checklist. Pubcon Cyber Week
ryanjones
0
68
From π to Pie charts
rasagy
0
120
Google's AI Overviews - The New Search
badams
0
910
4 Signs Your Business is Dying
shpigford
187
22k
Exploring the Power of Turbo Streams & Action Cable | RailsConf2023
kevinliebholz
37
6.3k
Transcript
Bayesian Statistical Analysis A Gentle Introduction Center for Quantitative Sciences
Workshop 18 November 2011 Christopher J. Fonnesbeck Monday, December 5, 11
What is Bayesian Inference? Monday, December 5, 11
Practical methods for making inferences from data using probability models
for quantities we observe and about which we wish to learn. Gelman et al., 2004 Monday, December 5, 11
Rev. Thomas Bayes Monday, December 5, 11
Rev. Thomas Bayes Simon Laplace Monday, December 5, 11
Conclusions in terms of probability statements p( |y) unknowns observations
Monday, December 5, 11
Classical inference conditions on unknown parameter p(y| ) unknowns observations
Monday, December 5, 11
Classical vs Bayesian Statistics Monday, December 5, 11
Frequentist Monday, December 5, 11
Frequentist observations random Monday, December 5, 11
Frequentist model, parameters fixed Monday, December 5, 11
Frequentist Inference Monday, December 5, 11
Choose an estimator ˆ µ = P xi n based
on frequentist (asymptotic) criteria Monday, December 5, 11
Choose a test statistic based on frequentist (asymptotic) criteria t
= ¯ x µ s/ p n Monday, December 5, 11
Bayesian Monday, December 5, 11
Bayesian observations fixed Monday, December 5, 11
Bayesian model, parameters “random” Monday, December 5, 11
Components of Bayesian Statistics Monday, December 5, 11
Specify full probability model 1 Pr(y| )Pr( |⇥)Pr(⇥) Monday, December
5, 11
data y Monday, December 5, 11
data y covariates X Monday, December 5, 11
data y covariates X parameters ✓ Monday, December 5, 11
data y covariates X parameters ✓ missing data ˜ y
Monday, December 5, 11
2 Calculate posterior distribution Pr( |y) Monday, December 5, 11
3Check model for lack of fit Monday, December 5, 11
Why Bayes? ? Monday, December 5, 11
“... the Bayesian approach is attractive because it is useful.
Its usefulness derives in large measure from its simplicity. Its simplicity allows the investigation of far more complex models than can be handled by the tools in the classical toolbox.” Link and Barker (2010) Monday, December 5, 11
coherence X ˜ y y ✓ Monday, December 5, 11
Interpretation Monday, December 5, 11
Pr( ¯ Y 1.96 ⇥ ⇥ n < µ <
¯ Y + 1.96 ⇥ ⇥ n ) = 0.95 Confidence Interval Pr(a(Y ) < ✓ < b(Y )|✓) = 0.95 Monday, December 5, 11
Credible Interval Pr(a(y) < ✓ < b(y)|Y = y) =
0.95 Monday, December 5, 11
Uncertainty Monday, December 5, 11
C alpha N z b_psi beta a_psi pi mu psi
Ntotal occupied a b Ndist psi z alpha pi N beta mu occupied N alpha beta N alpha beta Complex Models Monday, December 5, 11
Probability Monday, December 5, 11
Pr(A) = m n A = an event of interest
m = no. of favourable outcomes n = total no. of possible outcomes (1) classical Monday, December 5, 11
all elementary events are equally likely Monday, December 5, 11
Pr(A) = lim n→∞ m n n = no. of
identical and independent trials m = no. of times A has occurred (2) frequentist Monday, December 5, 11
Between 1745 and 1770 there were 241,945 girls and 251,527
boys born in Paris Monday, December 5, 11
A = “Chris has Type A blood” Monday, December 5,
11
A = “Titans will win Superbowl XLVI” Monday, December 5,
11
A = “The prevalence of diabetes in Nashville is >
0.15” Monday, December 5, 11
(3) subjective Pr(A) Monday, December 5, 11
Measure of one’s uncertainty regarding the occurrence of A Pr(A)
Monday, December 5, 11
Pr(A|H) Monday, December 5, 11
A = “It is raining in Atlanta” Monday, December 5,
11
Pr(A|H) = 0.5 Monday, December 5, 11
Pr( A|H ) = ⇢ 0 . 4 if raining
in Nashville 0 . 25 otherwise Monday, December 5, 11
Pr(A|H) = 1, if raining 0, otherwise Monday, December 5,
11
S A Pr(A) = area of A area of S
Monday, December 5, 11
S A B A ∩ B Pr(A ⇥ B) =
Pr(A) + Pr(B) Pr(A ⇤ B) Monday, December 5, 11
A A ∩ B Pr(B|A) = Pr(A B) Pr(A) Monday,
December 5, 11
A A ∩ B conditional probability Pr(B|A) = Pr(A B)
Pr(A) Monday, December 5, 11
Independence Pr(B|A) = Pr(B) Monday, December 5, 11
S A B A ∩ B Pr(B|A) = Pr(A B)
Pr(A) Monday, December 5, 11
S A B A ∩ B Pr(A|B) = Pr(A B)
Pr(B) Pr(B|A) = Pr(A B) Pr(A) Monday, December 5, 11
Pr(A B) = Pr(A|B)Pr(B) = Pr(B|A)Pr(A) Monday, December 5, 11
Bayes Theorem Pr(B|A) = Pr(A|B)Pr(B) Pr(A) Monday, December 5, 11
Bayes Theorem Pr( |y) = Pr(y| )Pr( ) Pr(y) Posterior
Probability Prior Probability Likelihood of Observations Normalizing Constant Monday, December 5, 11
Bayes Theorem Pr( |y) = Pr(y| )Pr( ) R Pr(y|
)Pr( )d Monday, December 5, 11
“proportional to” Pr( |y) Pr(y| )Pr( ) Monday, December 5,
11
Pr( |y) Pr(y| )Pr( ) Posterior Prior Likelihood Monday, December
5, 11
information p( |y) p(y| )p( ) Monday, December 5, 11
“Following observation of , the likelihood contains all experimental information
from about the unknown .” θ y y L(✓|y) Monday, December 5, 11
binomial model data parameter sampling distribution of X p(X|✓) =
✓ N n ◆ ✓x (1 ✓)N x Monday, December 5, 11
binomial model likelihood function for θ L(✓|X) = ✓ N
n ◆ ✓x (1 ✓)N x Monday, December 5, 11
prior distribution p(θ|y) ∝ p(y|θ)p(θ) Monday, December 5, 11
Prior as population distribution Monday, December 5, 11
Monday, December 5, 11
Prior as information state Monday, December 5, 11
Monday, December 5, 11
All plausible values Monday, December 5, 11
Between 1745 and 1770 there were 241,945 girls and 251,527
boys born in Paris Monday, December 5, 11
Bayesian analysis is subjective Monday, December 5, 11
Statistical analysis is subjective Monday, December 5, 11
“... all forms of statistical inference make assumptions, assumptions which
can only be tested very crudely and can almost never be verified.” - Robert E. Kass Monday, December 5, 11
3 Model checking Monday, December 5, 11
1.5 2.0 2.5 0.0 0.2 0.4 0.6 0.8 1.0 x
p(x) separation Monday, December 5, 11
source: Gelman et al. 2008 Monday, December 5, 11
weakly-informative prior -4 -2 0 2 4 0.0 0.1 0.2
0.3 0.4 xrange Pr(x) Monday, December 5, 11
source: Gelman et al. 2008 Monday, December 5, 11
example: genetic probabilities Monday, December 5, 11
X-linked recessive Monday, December 5, 11
Monday, December 5, 11
affected carrier no gene unknown Woman Husband Brother Mother is
the woman a carrier? Monday, December 5, 11
Pr(θ = 1) = Pr(θ = 0) = 1 2
Pr(θ = 1) Pr(θ = 0) = 1 prior odds Monday, December 5, 11
affected carrier no gene unknown Woman Husband Brother Son Son
Mother Monday, December 5, 11
Pr(y1 = 0, y2 = 0|θ = 1) = (0.5)(0.5)
= 0.25 Monday, December 5, 11
Pr(y1 = 0, y2 = 0|θ = 1) = (0.5)(0.5)
= 0.25 Pr(y1 = 0, y2 = 0|θ = 0) = 1 Monday, December 5, 11
Pr(y1 = 0, y2 = 0|θ = 1) = (0.5)(0.5)
= 0.25 Pr(y1 = 0, y2 = 0|θ = 0) = 1 “likelihood ratio” p(y1 = 0, y2 = 0|θ = 1) p(y1 = 0, y2 = 0|θ = 0) = 0.25 1 = 1/4 Monday, December 5, 11
what about Mom? Monday, December 5, 11
what about Mom? y = {y1 = 0, y2 =
0} Pr( = 1|y) = Pr(y| = 1)Pr( = 1) Pr(y) = Pr(y| = 1)Pr( = 1) P ✓ Pr(y| )Pr( ) Monday, December 5, 11
y = {y1 = 0, y2 = 0} Monday, December
5, 11
Pr( = 1|y) = p(y| = 1)Pr( = 1) p(y|
= 1)Pr( = 1) + p(y| = 0)Pr( = 0) y = {y1 = 0, y2 = 0} Monday, December 5, 11
Pr( = 1|y) = p(y| = 1)Pr( = 1) p(y|
= 1)Pr( = 1) + p(y| = 0)Pr( = 0) = (0.25)(0.5) (0.25)(0.5) + (1.0)(0.5) = 0.125 0.625 = 0.2 y = {y1 = 0, y2 = 0} Monday, December 5, 11
3rd unaffected son? Pr( = 1|y3 ) = (0.5)(0.2) (0.5)(0.2)
+ (1)(0.8) = 0.111 posterior from previous Monday, December 5, 11
Hierarchical Models Monday, December 5, 11
effectiveness of cardiac surgery example Monday, December 5, 11
Hospital Operations Deaths A 47 0 B 148 18 C
119 8 D 810 46 E 211 8 F 196 13 G 148 9 H 215 31 I 207 14 J 97 8 K 256 29 L 360 24 Monday, December 5, 11
clustering induces dependence between observations Monday, December 5, 11
parameters sampled from common distribution j hospital j survival rate
Monday, December 5, 11
population distribution j f(⇥) hyperparameters Monday, December 5, 11
θ1 θ2 θk y1 y2 yk ... ... deaths parameters
Monday, December 5, 11
θ1 θ2 θk y1 y2 yk ... ... deaths parameters
µ, σ2 hyperparameters Monday, December 5, 11
, ϕµ ϕσ θ1 θ2 θk y1 y2 yk ...
... deaths parameters µ, σ2 hyperparameters Monday, December 5, 11
non-hierarchical models of hierarchical data can easily be underfit or
overfit Monday, December 5, 11
“experiments” j = 1, . . . , J likelihood
∼ Binomial( , ) deaths j operations j θj logit( ) ∼ N(µ, ) θi σ2 population model µ ∼ , ∼ Pµ σ2 Pσ priors Monday, December 5, 11
0/47 = 0 18/148 = 0.12 8/119 = 0.07 46/810
= 0.06 Monday, December 5, 11
Monday, December 5, 11
Monday, December 5, 11