Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Bayesian Statistical Analysis: A Gentle Introdu...
Search
Chris Fonnesbeck
December 05, 2011
Research
4
600
Bayesian Statistical Analysis: A Gentle Introduction
Get to know the Reverend Bayes.Reverend
Chris Fonnesbeck
December 05, 2011
Tweet
Share
More Decks by Chris Fonnesbeck
See All by Chris Fonnesbeck
Statistical Thinking for Data Science
fonnesbeck
5
1k
Structured Decision-making and Adaptive Management For The Control Of Infectious Disease
fonnesbeck
3
100
Estimating Microbial Diversity
fonnesbeck
0
110
Other Decks in Research
See All in Research
大規模言語モデルのバイアス
yukinobaba
PRO
4
700
Tietovuoto Social Design Agency (SDA) -trollitehtaasta
hponka
0
2.5k
外積やロドリゲスの回転公式を利用した点群の回転
kentaitakura
1
650
MIRU2024_招待講演_RALF_in_CVPR2024
udonda
1
330
熊本から日本の都市交通政策を立て直す~「車1割削減、渋滞半減、公共交通2倍」の実現へ~@公共交通マーケティング研究会リスタートセミナー
trafficbrain
0
140
研究の進め方 ランダムネスとの付き合い方について
joisino
PRO
55
19k
Large Vision Language Model (LVLM) に関する最新知見まとめ (Part 1)
onely7
20
3.2k
Weekly AI Agents News!
masatoto
25
24k
機械学習でヒトの行動を変える
hiromu1996
1
300
Generative Predictive Model for Autonomous Driving 第61回 コンピュータビジョン勉強会@関東 (後編)
kentosasaki
0
210
授業評価アンケートのテキストマイニング
langstat
1
360
3次元点群の分類における評価指標について
kentaitakura
0
410
Featured
See All Featured
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
PRO
10
720
Into the Great Unknown - MozCon
thekraken
32
1.5k
How GitHub (no longer) Works
holman
310
140k
Java REST API Framework Comparison - PWX 2021
mraible
PRO
28
8.2k
What's in a price? How to price your products and services
michaelherold
243
12k
Facilitating Awesome Meetings
lara
50
6.1k
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
506
140k
The Straight Up "How To Draw Better" Workshop
denniskardys
232
140k
Code Review Best Practice
trishagee
64
17k
Happy Clients
brianwarren
98
6.7k
Typedesign – Prime Four
hannesfritz
40
2.4k
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
28
2k
Transcript
Bayesian Statistical Analysis A Gentle Introduction Center for Quantitative Sciences
Workshop 18 November 2011 Christopher J. Fonnesbeck Monday, December 5, 11
What is Bayesian Inference? Monday, December 5, 11
Practical methods for making inferences from data using probability models
for quantities we observe and about which we wish to learn. Gelman et al., 2004 Monday, December 5, 11
Rev. Thomas Bayes Monday, December 5, 11
Rev. Thomas Bayes Simon Laplace Monday, December 5, 11
Conclusions in terms of probability statements p( |y) unknowns observations
Monday, December 5, 11
Classical inference conditions on unknown parameter p(y| ) unknowns observations
Monday, December 5, 11
Classical vs Bayesian Statistics Monday, December 5, 11
Frequentist Monday, December 5, 11
Frequentist observations random Monday, December 5, 11
Frequentist model, parameters fixed Monday, December 5, 11
Frequentist Inference Monday, December 5, 11
Choose an estimator ˆ µ = P xi n based
on frequentist (asymptotic) criteria Monday, December 5, 11
Choose a test statistic based on frequentist (asymptotic) criteria t
= ¯ x µ s/ p n Monday, December 5, 11
Bayesian Monday, December 5, 11
Bayesian observations fixed Monday, December 5, 11
Bayesian model, parameters “random” Monday, December 5, 11
Components of Bayesian Statistics Monday, December 5, 11
Specify full probability model 1 Pr(y| )Pr( |⇥)Pr(⇥) Monday, December
5, 11
data y Monday, December 5, 11
data y covariates X Monday, December 5, 11
data y covariates X parameters ✓ Monday, December 5, 11
data y covariates X parameters ✓ missing data ˜ y
Monday, December 5, 11
2 Calculate posterior distribution Pr( |y) Monday, December 5, 11
3Check model for lack of fit Monday, December 5, 11
Why Bayes? ? Monday, December 5, 11
“... the Bayesian approach is attractive because it is useful.
Its usefulness derives in large measure from its simplicity. Its simplicity allows the investigation of far more complex models than can be handled by the tools in the classical toolbox.” Link and Barker (2010) Monday, December 5, 11
coherence X ˜ y y ✓ Monday, December 5, 11
Interpretation Monday, December 5, 11
Pr( ¯ Y 1.96 ⇥ ⇥ n < µ <
¯ Y + 1.96 ⇥ ⇥ n ) = 0.95 Confidence Interval Pr(a(Y ) < ✓ < b(Y )|✓) = 0.95 Monday, December 5, 11
Credible Interval Pr(a(y) < ✓ < b(y)|Y = y) =
0.95 Monday, December 5, 11
Uncertainty Monday, December 5, 11
C alpha N z b_psi beta a_psi pi mu psi
Ntotal occupied a b Ndist psi z alpha pi N beta mu occupied N alpha beta N alpha beta Complex Models Monday, December 5, 11
Probability Monday, December 5, 11
Pr(A) = m n A = an event of interest
m = no. of favourable outcomes n = total no. of possible outcomes (1) classical Monday, December 5, 11
all elementary events are equally likely Monday, December 5, 11
Pr(A) = lim n→∞ m n n = no. of
identical and independent trials m = no. of times A has occurred (2) frequentist Monday, December 5, 11
Between 1745 and 1770 there were 241,945 girls and 251,527
boys born in Paris Monday, December 5, 11
A = “Chris has Type A blood” Monday, December 5,
11
A = “Titans will win Superbowl XLVI” Monday, December 5,
11
A = “The prevalence of diabetes in Nashville is >
0.15” Monday, December 5, 11
(3) subjective Pr(A) Monday, December 5, 11
Measure of one’s uncertainty regarding the occurrence of A Pr(A)
Monday, December 5, 11
Pr(A|H) Monday, December 5, 11
A = “It is raining in Atlanta” Monday, December 5,
11
Pr(A|H) = 0.5 Monday, December 5, 11
Pr( A|H ) = ⇢ 0 . 4 if raining
in Nashville 0 . 25 otherwise Monday, December 5, 11
Pr(A|H) = 1, if raining 0, otherwise Monday, December 5,
11
S A Pr(A) = area of A area of S
Monday, December 5, 11
S A B A ∩ B Pr(A ⇥ B) =
Pr(A) + Pr(B) Pr(A ⇤ B) Monday, December 5, 11
A A ∩ B Pr(B|A) = Pr(A B) Pr(A) Monday,
December 5, 11
A A ∩ B conditional probability Pr(B|A) = Pr(A B)
Pr(A) Monday, December 5, 11
Independence Pr(B|A) = Pr(B) Monday, December 5, 11
S A B A ∩ B Pr(B|A) = Pr(A B)
Pr(A) Monday, December 5, 11
S A B A ∩ B Pr(A|B) = Pr(A B)
Pr(B) Pr(B|A) = Pr(A B) Pr(A) Monday, December 5, 11
Pr(A B) = Pr(A|B)Pr(B) = Pr(B|A)Pr(A) Monday, December 5, 11
Bayes Theorem Pr(B|A) = Pr(A|B)Pr(B) Pr(A) Monday, December 5, 11
Bayes Theorem Pr( |y) = Pr(y| )Pr( ) Pr(y) Posterior
Probability Prior Probability Likelihood of Observations Normalizing Constant Monday, December 5, 11
Bayes Theorem Pr( |y) = Pr(y| )Pr( ) R Pr(y|
)Pr( )d Monday, December 5, 11
“proportional to” Pr( |y) Pr(y| )Pr( ) Monday, December 5,
11
Pr( |y) Pr(y| )Pr( ) Posterior Prior Likelihood Monday, December
5, 11
information p( |y) p(y| )p( ) Monday, December 5, 11
“Following observation of , the likelihood contains all experimental information
from about the unknown .” θ y y L(✓|y) Monday, December 5, 11
binomial model data parameter sampling distribution of X p(X|✓) =
✓ N n ◆ ✓x (1 ✓)N x Monday, December 5, 11
binomial model likelihood function for θ L(✓|X) = ✓ N
n ◆ ✓x (1 ✓)N x Monday, December 5, 11
prior distribution p(θ|y) ∝ p(y|θ)p(θ) Monday, December 5, 11
Prior as population distribution Monday, December 5, 11
Monday, December 5, 11
Prior as information state Monday, December 5, 11
Monday, December 5, 11
All plausible values Monday, December 5, 11
Between 1745 and 1770 there were 241,945 girls and 251,527
boys born in Paris Monday, December 5, 11
Bayesian analysis is subjective Monday, December 5, 11
Statistical analysis is subjective Monday, December 5, 11
“... all forms of statistical inference make assumptions, assumptions which
can only be tested very crudely and can almost never be verified.” - Robert E. Kass Monday, December 5, 11
3 Model checking Monday, December 5, 11
1.5 2.0 2.5 0.0 0.2 0.4 0.6 0.8 1.0 x
p(x) separation Monday, December 5, 11
source: Gelman et al. 2008 Monday, December 5, 11
weakly-informative prior -4 -2 0 2 4 0.0 0.1 0.2
0.3 0.4 xrange Pr(x) Monday, December 5, 11
source: Gelman et al. 2008 Monday, December 5, 11
example: genetic probabilities Monday, December 5, 11
X-linked recessive Monday, December 5, 11
Monday, December 5, 11
affected carrier no gene unknown Woman Husband Brother Mother is
the woman a carrier? Monday, December 5, 11
Pr(θ = 1) = Pr(θ = 0) = 1 2
Pr(θ = 1) Pr(θ = 0) = 1 prior odds Monday, December 5, 11
affected carrier no gene unknown Woman Husband Brother Son Son
Mother Monday, December 5, 11
Pr(y1 = 0, y2 = 0|θ = 1) = (0.5)(0.5)
= 0.25 Monday, December 5, 11
Pr(y1 = 0, y2 = 0|θ = 1) = (0.5)(0.5)
= 0.25 Pr(y1 = 0, y2 = 0|θ = 0) = 1 Monday, December 5, 11
Pr(y1 = 0, y2 = 0|θ = 1) = (0.5)(0.5)
= 0.25 Pr(y1 = 0, y2 = 0|θ = 0) = 1 “likelihood ratio” p(y1 = 0, y2 = 0|θ = 1) p(y1 = 0, y2 = 0|θ = 0) = 0.25 1 = 1/4 Monday, December 5, 11
what about Mom? Monday, December 5, 11
what about Mom? y = {y1 = 0, y2 =
0} Pr( = 1|y) = Pr(y| = 1)Pr( = 1) Pr(y) = Pr(y| = 1)Pr( = 1) P ✓ Pr(y| )Pr( ) Monday, December 5, 11
y = {y1 = 0, y2 = 0} Monday, December
5, 11
Pr( = 1|y) = p(y| = 1)Pr( = 1) p(y|
= 1)Pr( = 1) + p(y| = 0)Pr( = 0) y = {y1 = 0, y2 = 0} Monday, December 5, 11
Pr( = 1|y) = p(y| = 1)Pr( = 1) p(y|
= 1)Pr( = 1) + p(y| = 0)Pr( = 0) = (0.25)(0.5) (0.25)(0.5) + (1.0)(0.5) = 0.125 0.625 = 0.2 y = {y1 = 0, y2 = 0} Monday, December 5, 11
3rd unaffected son? Pr( = 1|y3 ) = (0.5)(0.2) (0.5)(0.2)
+ (1)(0.8) = 0.111 posterior from previous Monday, December 5, 11
Hierarchical Models Monday, December 5, 11
effectiveness of cardiac surgery example Monday, December 5, 11
Hospital Operations Deaths A 47 0 B 148 18 C
119 8 D 810 46 E 211 8 F 196 13 G 148 9 H 215 31 I 207 14 J 97 8 K 256 29 L 360 24 Monday, December 5, 11
clustering induces dependence between observations Monday, December 5, 11
parameters sampled from common distribution j hospital j survival rate
Monday, December 5, 11
population distribution j f(⇥) hyperparameters Monday, December 5, 11
θ1 θ2 θk y1 y2 yk ... ... deaths parameters
Monday, December 5, 11
θ1 θ2 θk y1 y2 yk ... ... deaths parameters
µ, σ2 hyperparameters Monday, December 5, 11
, ϕµ ϕσ θ1 θ2 θk y1 y2 yk ...
... deaths parameters µ, σ2 hyperparameters Monday, December 5, 11
non-hierarchical models of hierarchical data can easily be underfit or
overfit Monday, December 5, 11
“experiments” j = 1, . . . , J likelihood
∼ Binomial( , ) deaths j operations j θj logit( ) ∼ N(µ, ) θi σ2 population model µ ∼ , ∼ Pµ σ2 Pσ priors Monday, December 5, 11
0/47 = 0 18/148 = 0.12 8/119 = 0.07 46/810
= 0.06 Monday, December 5, 11
Monday, December 5, 11
Monday, December 5, 11